
CMP320
Operating Systems

Lecture 17, 18

Operating System Concepts

Fall 2017
Arif Butt

Note: Some slides and/or pictures are adapted from Lecture slides / Books of
• Dr Mansoor Sarwar.
• Dr Kubiatowicz.
• Dr P. Bhat.
• Dr Hank Levy.
• Dr Indranil Gupta.
• Text Book - OS Concepts by Silberschatz, Galvin, and Gagne.
• Ref Books

• Operating Systems Design and Implementation by Tanenbaum.
• Operating Systems by William Stalling.
• Operating Systems by Colin Ritchie.

Today’s	Agenda
• Introduction to Dead Locks

• Examples of Deadlocks

• Conditions for Deadlocks

• Resource Allocation Graphs

• Deadlock Solutions
– Prevention

– Avoidance

– Detection and Recovery

2CMP325			PUCIT			Arif	Butt

• A set of processes is said to be in a dead
lock state if every process is waiting for
an event that can be caused only by
another process in the set

• A set of blocked processes each holding a
resource and waiting to acquire a resource
held by another process in the set

• A process is said to be dead locked if it is
waiting for an event which will never occur

Deadlock Problem

3CMP325			PUCIT			Arif	Butt

Examples
• A table with a writing pad and a pen. Two persons sitting

around the table wants to write letter. One picks up the
pad and the other grab the pen, causing dead lock

• Two cars crossing a single lane bridge from opposite
direction

• A person going down a ladder while another person is
climbing up the ladder

• Two trains travelling toward each other on the same
track

• Consider a system having two tape drives. P1 and P2 each
hold one tape drive and each needs the other one (e.g., to
copy data from one tape drive to another)

Deadlock Problem (cont…)

4CMP325			PUCIT			Arif	Butt

CMP325			PUCIT			Arif	Butt 5

• Consider two semaphores s1 and s2 each initialized to 1.

P0 P1
wait(s1); wait(s2);
wait(s2); wait(s1);.
signal(s1); signal(s2);
signal(s2); signal(s1);.

P0 P1

signal(s1)

signal(s2)

Deadlock Problem (cont…)

Dining Philosopher Problem
• Consider the dining philosophers problem
• All five philosophers become hungry at the same time
• All pick up the chopsticks on their left and look for the

right, which was held by the neighboring philosopher
• No one put the chopstick back and wait for the right

chopstick and finally all starved to death

Deadlock Problem (cont…)

6CMP325			PUCIT			Arif	Butt

Deadlock	in	the	real	world

Which way
should I go?

7CMP325			PUCIT			Arif	Butt

Deadlock in	the	real	world

I can almost
get across

8CMP325			PUCIT			Arif	Butt

Deadlock:	One-lane	Bridge

• Traffic only in one direction
• Each section of a bridge can be viewed as a resource

What can happen?

9CMP325			PUCIT			Arif	Butt

Deadlock:	One-lane	Bridge

• Traffic only in one direction
• Each section of a bridge can be viewed as a resource
• Deadlock

– Resolved if cars back up (preempt resources and rollback)
– Several cars may have to be backed up

10CMP325			PUCIT			Arif	Butt

Deadlock:	One-lane	Bridge

• Traffic only in one direction
• Each section of a bridge can be viewed as a resource
• Deadlock

– Resolved if cars back up (preempt resources and rollback)
– Several cars may have to be backed up

• But, starvation is possible
– e.g., if the rule is that Westbound cars always go first

when present
11CMP325			PUCIT			Arif	Butt

Deadlock:	One-lane	Bridge

• Deadlock vs. Starvation
– Starvation = Indefinitely postponed

• Delayed repeatedly over a long period of time while the attention
of the system is given to other processes

• Logically, the process may proceed but the system never gives it
the CPU (unfortunate scheduling)

– Deadlock = no hope
• All processes blocked; scheduling change won’t help

I always have to
back up!

12CMP325			PUCIT			Arif	Butt

Resources

13

• Deadlocks occurs when processes have been granted exclusive access to
resources; In case of sharable access DL will not occur

• A resource can be a hardware device (e.g. tape drive, printer, memory,
CPU) or a piece of information (a variable, file, semaphore, record of a
database)

• Resources comes in two flavors:

– Preemptable Resources. A resource that can be taken away from
the process holding it with no ill effects, (sharable resources) e.g.
CPU, memory

– Non-Preemptable Resources. A resource that cannot be taken
away from the process holding it, w/o causing the computation to
fail, (non sharable resources) e.g. if a process has begun to burn a CD
ROM, suddenly taking the CD recorder away from it and giving the
CD Recorder to another process will result in a garbled CD

• In general DL involve non-preemptable resources

• A process may utilize a resource in following sequence:

Request Use ReleaseCMP325			PUCIT			Arif	Butt

Conditions for Deadlock

14

Deadlock can arise if four conditions hold simultaneously.
1. Mutual exclusion: Only one process at a time can use a

resource.
2. Hold and wait: A process holding one or more allocated

resources while awaiting assignment of other.
3. No preemption: No resource can be forcibly removed

from a process holding it.
4. Circular wait: There exists a set {P0, P1, …, Pn} of waiting

processes such that P0 is waiting for a resource that is
held by P1, P1 is waiting for a resource that is held by P2,
…, Pn–1 is waiting for a resource that is held by
Pn, and Pn is waiting for a resource that is held by P0.

P0 → P1 → P2 → … → Pn → P0
CMP325			PUCIT			Arif	Butt

Resource Allocation Graph

15CMP325			PUCIT			Arif	Butt

• Consider some processes {P0, P1, P2, ….Pn} and some
resources {R0, R1, R2, … Rn} within a system.

• Each resource type may have one or more instances.
• Each process utilizes a resource as (request, use,

release).
• RAG

– A set of vertices V and a set of edges E.
– V is partitioned into two types:

ü P = {P1, P2, …, Pn}
ü R = {R1, R2, …, Rm}

– E can also be of two types:
ü Request Edge: P1 ® Rj
ü Assignment Edge: Rj ® Pi

P
R

Resource Allocation Graph

16CMP325			PUCIT			Arif	Butt

• Modeled with directed graphs

• Resource R assigned to process A
• Process B is requesting/waiting for resource S
• Process C and D are in deadlock over resources

T and U

Resource Allocation Graph

17CMP325			PUCIT			Arif	Butt

A B C

Resource Allocation Graph

18CMP325			PUCIT			Arif	Butt

a. Suppose	that	in	step	4	/	(o)	C	requested	S	instead	of	requesting	R.	Would	this	lead	to	deadlock?
b. Suppose	C	requested	both	S	and	R.	Would	this	lead	to	deadlock?

(o) (p) (q)

Resource Allocation Graph

19CMP325			PUCIT			Arif	Butt

RAG with multiple resources of same type

Resource Allocation Graph

20CMP325			PUCIT			Arif	Butt

RAG with multiple resources of different types

RAG Example 1

21CMP325			PUCIT			Arif	Butt

RAG Example 2

22CMP325			PUCIT			Arif	Butt

RAG Example 3

23CMP325			PUCIT			Arif	Butt

Basic Facts

24CMP325			PUCIT			Arif	Butt

• If graph contains no cycles Þ no deadlock.
• If graph contains a cycle Þ

– If only one instance per resource type, then
deadlock.

– If several instances per resource type,
possibility of deadlock.

Sample Problems

25CMP325			PUCIT			Arif	Butt

Problem 1
A system has four processes P1 through P4 and two resource
types R1 and R2. It has 2 units of R1 and 3 units of R2. Given that:

• P1 requests 2 units of R2 and 1 unit of R1.
• P2 holds 2 units of R1 and 1 unit of R2.
• P3 holds 1 unit of R2.
• P4 requests 1 unit of R1.

Show the resource graph for this state of the system. Is the
system in deadlock? And if so, which process(es) are involved?

Problem 2
A system has five processes P1 through P5 and four resource
types R1 through R4. It has 2 units of each resource type. Given
that:

• P1 holds 1 unit of R1 and requests 1 unit of R4.
• P2 holds 1 unit of R3 and requests 1 unit of R2.
• P3 holds 1 unit of R2 and requests 1 unit of R3.
• P4 requests 1 unit of R4.
• P5 holds 1 unit of R3 and 1 unit of R2 and requests 1 unit of R3.

Show the resource graph for this state of the system. Is the
system in deadlock? And if so, which process(es) are involved?

• Generally speaking we can deal with Deadlock
problem in one of three ways:

o Ensure that the system will never enter a deadlock
state (Prevention, Avoidance)

o Allow the system to enter a deadlock state and then
recover (Detection & Recovery)

o Ignore the problem and pretend that deadlocks never
occur in the system (Do nothing)

Deadlock Solutions

26CMP325			PUCIT			Arif	Butt

• Prevention
o Design system so that deadlock is impossible. It involves

adopting a static policy that disallows one of the four
conditions for deadlock.

• Avoidance
o Steer around deadlock with smart scheduling. It involves

making dynamic choices that guarantee prevention
• Detection & recovery

o Check for deadlock periodically. Recover by killing a
deadlocked processes and releasing its resources

• Do nothing
o Prevention, avoidance and detection/recovery are

expensive. If deadlock is rare, is it worth the overhead?
Manual intervention (kill processes, reboot) if needed

Deadlock Solutions

27CMP325			PUCIT			Arif	Butt

PREVENTION

28CMP325			PUCIT			Arif	Butt

Deadlock Prevention

29CMP325			PUCIT			Arif	Butt

Restrain the ways resource allocation
requests can be made, to ensure that at
least one of the four necessary conditions is
violated.
• Mutual Exclusion
• Hold and Wait
• No Preemption
• Circular Wait

Deadlock Prevention (cont…)

30CMP325			PUCIT			Arif	Butt

No Mutual Exclusion
• It is not possible to prevent D/L by denying the

mutual exclusion condition only; because we
cannot deny mutual exclusion for non-sharable
resources like printer.

• We cannot deny mutual exclusion in case of a
printer i.e. we cannot preempt a process that
has printed half a page and give the printer to
another process.

Deadlock Prevention (cont…)

31CMP325			PUCIT			Arif	Butt

Deny Hold and Wait
• We must guarantee that when ever a process request

a resource, it does not hold any other resource
• Option 1 - Deny wait

– Allocate the process with all the requested resources
before it starts execution. If one or more resources
are busy, nothing would be allocated and the process
would just wait. (Low resource utilization)

• Option 2 - Deny hold
– A process may request some resources and use them.

But before requesting any additional resources, it must
release all the resources that are currently allocated.
(Possibility of starvation)

• Example – (Tape drive, Disk drive, Printer)

Deadlock Prevention (cont…)

32CMP325			PUCIT			Arif	Butt

Allow Preemption
• If a process that is holding some resources requests

another resource that cannot be immediately
allocated to it, then all resources currently being
held are released.

• Process will be restarted only when it can regain its
old resources as well as the new ones that it has
requested.

• This protocol is often applied to resources whose
state can be easily saved and restored later (pre-
emptible resources), such as CPU registers and
memory space. It cannot generally be applied to
such resources as printers and tape drives. (Its difficult
to take a tape drive away from a process that is busy writing a tape).

Process

Resource

request

ownership

Deadlock Prevention (cont…)
Breaks Circular Wait (Solution 1)
• In resource allocation diagram: process with an outgoing

link must have no incoming links
• Therefore, cannot have a loop!

CMP325			PUCIT			Arif	Butt 33

Q: Which of these request links would be disallowed?

Process

Resource

request

ownership

Deadlock Prevention (cont…)
Breaks Circular Wait (Solution 1)
• In resource allocation diagram: process with an outgoing

link must have no incoming links
• Therefore, cannot have a loop!

Legal Links are:

CMP325			PUCIT			Arif	Butt 34

Deadlock Prevention (cont…)

Very constraining
• Often need more than one resource
• Hard to predict at the beginning what resources you’ll need
• Releasing and re-requesting is inefficient, complicates programming,

might lead to starvation

Breaks Circular Wait (Solution 1)
• In resource allocation diagram: process with an outgoing

link must have no incoming links
• Therefore, cannot have a loop!

Legal Links are:

CMP325			PUCIT			Arif	Butt 35

Deadlock Prevention (cont…)

36CMP325			PUCIT			Arif	Butt

Break Circular wait (Solution 2)
• Break circular wait by requesting resources in order
• Provide a global numbering to all resources
• Each process can request resources only in an increasing

order of enumeration
• We assign a unique number to each resource type by using

function
F: R → N

and make sure that processes request resources in an
increasing order of enumeration.

• Example
– Tape drive = 1, Disk drive = 5, and Printer = 12
– P1 holding Tape can request for both DD and Printer
– P2 holding DD can request for Printer but not for TD

Deadlock Prevention (cont…)

37CMP325			PUCIT			Arif	Butt

Circular wait (Proof)
• Lets assume that a cycle exist among processes:
P0 → P1 → P2 → … → Pk → P0

R0 R1 R2 Rk R0

• P0 is holding R0 and waiting for P1 to release R1;
• P1 is holding R1 and waiting for P2 to release R2

and so on.
• As per rule of circular wait:
Þ F(R0) < F(R1) < … F(Rk) < F(R0)

Þ F(R0) < F(R0), which is impossible

Þ There can be no circular wait

Consider the Dining Philosopher
problem
define N 5

void philosopher (int i) {
while (TRUE) {

think();
take_fork(i);
take_fork((i+1)%N);
eat(); /* yummy */
put_fork(i);
put_fork((i+1)%N);

}
}

Dining Philosophers solution with
unnumbered resources

CMP325			PUCIT			Arif	Butt 38

Each philosopher first request the
left fork, which is assigned to him
define N 5

void philosopher (int i) {
while (TRUE) {

think();
take_fork(i);
take_fork((i+1)%N);
eat(); /* yummy */
put_fork(i);
put_fork((i+1)%N);

}
}

Dining Philosophers solution with
unnumbered resources

CMP325			PUCIT			Arif	Butt 39

Each philosopher then request the
right fork, which makes a cycle
define N 5

void philosopher (int i) {
while (TRUE) {

think();
take_fork(i);
take_fork((i+1)%N);
eat(); /* yummy */
put_fork(i);
put_fork((i+1)%N);

}
}

Dining Philosophers solution with
unnumbered resources

CMP325			PUCIT			Arif	Butt 40

Each philosopher first request lower
numbered fork. Fork#1 is requested
for by two philosophers
define N 5

void philosopher (int i) {
while (TRUE) {

think();
take_fork(LOWER(i));
take_fork(HIGHER(i));
eat(); /* yummy */
put_fork(LOWER(i));
put_fork(HIGHER(i));

}
}

1

2
3

4

5

Dining Philosophers solution with
numbered resources

CMP325			PUCIT			Arif	Butt 41

One of the philosophers doesn’t get
the fork.
define N 5

void philosopher (int i) {
while (TRUE) {

think();
take_fork(LOWER(i));
take_fork(HIGHER(i));
eat(); /* yummy */
put_fork(LOWER(i));
put_fork(HIGHER(i));

}
}

1

2
3

4

5

Dining Philosophers solution with
numbered resources

CMP325			PUCIT			Arif	Butt 42

Philosophers holding one resource
then, request higher numbered fork
define N 5

void philosopher (int i) {
while (TRUE) {

think();
take_fork(LOWER(i));
take_fork(HIGHER(i));
eat(); /* yummy */
put_fork(LOWER(i));
put_fork(HIGHER(i));

}
}

1

2
3

4

5

Dining Philosophers solution with
numbered resources

CMP325			PUCIT			Arif	Butt 43

One philosopher can eat!

define N 5

void philosopher (int i) {
while (TRUE) {

think();
take_fork(LOWER(i));
take_fork(HIGHER(i));
eat(); /* yummy */
put_fork(LOWER(i));
put_fork(HIGHER(i));

}
}

1

2
3

4

5

Dining Philosophers solution with
numbered resources

CMP325			PUCIT			Arif	Butt 44

• Without numbering

Cycle!

Ordered Resource requests Prevent
Deadlock

CMP325			PUCIT			Arif	Butt 45

• With numbering

3
4

7
8

Contradiction:
Must have requested 3

first!

Ordered Resource requests Prevent
Deadlock

CMP325			PUCIT			Arif	Butt 46

Are we always in trouble without ordering resources?

n No, not always:

• Ordered resource requests are sufficient
to avoid deadlock, but not necessary

• Convenient, but may be conservative

3
4

7
8

Ordered Resource requests Prevent
Deadlock

CMP325			PUCIT			Arif	Butt 47

Sample Problem

48CMP325			PUCIT			Arif	Butt

Problem
Consider the deadlock situation that could occur in the
dining-philosophers problem. When the philosophers obtain
the chopsticks one at a time. Discuss how the four
necessary conditions for deadlock indeed hold in this
setting. Discuss how deadlocks could be avoided by
eliminating any one of the four conditions

AVOIDANCE

49CMP325			PUCIT			Arif	Butt

50CMP325			PUCIT			Arif	Butt

• Deadlock avoidance is subtly different from
deadlock prevention: we allow the three necessary
conditions for deadlock, but we dynamically
allocate resources in such a way that deadlock
never occurs. There are two principal approaches.
1. Do not start a process if its demands might lead to

deadlock. This strategy is very conservative and thus
inefficient.

2. Do not grant a resource request if this allocation
might lead to deadlock. The basic idea is that a
request is granted only if some allocation of the
remaining free resources is sufficient to allow all
processes to complete.

• Both strategies require processes to state their
resource requirements in advance.

Deadlock Avoidance

51CMP325			PUCIT			Arif	Butt

Deadlock Avoidance (cont…)
§ The implementation of deadlock avoidance requires

that the system has an advanced information available
about the future use of resources by processes.

§ Simplest way is that each process declare the
maximum number of resources of each type that it may
need.

§ The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure that
there can never be a circular-wait condition.

§ Resource-Allocation state is defined by the total
number of resources available in the system, maximum
demands of the processes and the number of
resources currently allocated to the processes.

52CMP325			PUCIT			Arif	Butt

Deadlock Avoidance (cont…)
§ Safe State. When a process requests an available resource,

system must decide if immediate allocation leaves the system in
a safe state. System is in a safe state if there is at least
one sequence of allocation of resources to processes that
does not result in a dead lock. (Sequence of processes does
not matter).

§ Safe Sequence is the sequence of execution of processes in
which OS fulfills requests of all the processes and still avoids
dead lock.

§ Basic Facts.
§ If a system is in safe state Þ no deadlocks.
§ If a system is in unsafe state Þ possibility of deadlock due

to the behavior of processes.
§ DL Avoidance ensure that a system never enters in unsafe

state.
§ A system can be in safe or unsafe state. Unsafe state does not

necessarily means that system is in DL. It may lead to a DL.

Sample Problem

53CMP325			PUCIT			Arif	Butt

• System with 12 tape drives and three processes.
Current system state is as shown

Process Max Need Allocated
P0 10 5
P1 4 2
P2 9 2

• Is the system in safe state, if yes give a safe sequence?

Sample Problem

54CMP325			PUCIT			Arif	Butt

§ Assuming that P2 requests and is allocated one
more instance of tape drive. The new system
state will be:

Process Max Need Allocated
P0 10 5
P1 4 2
P2 9 3

§ Is the system in safe state, if yes give a safe sequence?
If not explain which process may cause a dead lock.

Sample Problem

55CMP325			PUCIT			Arif	Butt

Process Max Need Allocated
P1 2 1
P2 3 1
P3

P4

4
5

2
0

§ Given 5 total units of the resource, tell whether
the following system is in a safe or unsafe state.

Sample Problem

56CMP325			PUCIT			Arif	Butt

§ Given a total of 10 units of a resource type, and
given the safe state shown below, should P2 be
granted a request of 2 additional resources?
Show your work.

Process Max Need Allocated

P1 5 2

P2 6 1

P3

P4

P5

6
2
4

2
1
1

Sample Problem

57CMP325			PUCIT			Arif	Butt

Problem 1
• Consider a system consisting of four resources of the

same type that are shared by three processes, each of
which needs at most two resources. Show that the system
is deadlock-free.

Problem 2
• A system has two processes and three identical resources.

Each process needs a maximum of two resources. Is
deadlock possible? Explain your answer.

Problem 3
• A computer has six tape drives, with n processes

competing for them. Each process may need two drives.
For which values of n is the system deadlock free?

RAG Algorithm

58CMP325			PUCIT			Arif	Butt

§ Used for DL avoidance in case of single instance of
each resource.

§ Claim edge Pi ® Rj indicates that process Pi may
request an instance of resource Rj; represented by
a dashed line.

§ Claim edge converts to request edge when a
process requests a resource.

§ When a resource is assigned to a process, request
edge reconverts to an assignment edge.

§ All processes will inform the algo in advance which
all resources they will be requiring in their life
cycle.

RAG Algorithm (cont…)

59CMP325			PUCIT			Arif	Butt

Claim	edge	is	converted	to	request	edge
and	then	to	assignment	edge

Before	converting	a	claim	edge	to	request	edge,	
we	need	to	check	whether	it	will	create	a	cycle	in	the	directed
Graph	or	not.

RAG Algorithm (cont…)

60CMP325			PUCIT			Arif	Butt

As seen in previous slides, in our digraph model with
one resource of one kind, the detection of a
deadlock requires that we detect a directed cycle in
a processor resource digraph. This can be simply
stated as follows:
§ Choose a process node as a root node to initiate a

depth first traversal.
§ Traverse the digraph in depth first mode.
§ Mark process nodes as we traverse the graph.
§ If a marked node is revisited then a deadlock

exist.

Banker’s Algorithm

61CMP325			PUCIT			Arif	Butt

• This is a deadlock avoidance algorithm for resources with multiple
instances.

• When a process initiates a request the algorithm checks
whether after the grant of this request the system will remain
in safe state. If yes the request is granted, if not the
request is denied.

• Algorithm is based on resource denial if there is a suspected risk
of a deadlock.

• Each process must in advance inform the algo the number of
instances it may require in its life time.

• When a process requests a resource it may have to wait, i.e. in
case the system is going to unsafe state by allocation of that
resource; the process must wait.

• When a process gets all its resources it must return them in a
finite amount of time.

• Example. Suppose U go to a bank with Rs. 100,000/ cheque and
request to get the money as Rs.10/ notes only.

DS for Banker’s Algorithm

62CMP325			PUCIT			Arif	Butt

§ n = Number of processes.
§ m = Number of resource types.
§ Available: Vector of length m, indicates the number of available

instances of resources of each type. Available[j] = k means that
there are k available instances of resource type Rj.

§ Max: n x m matrix, indicates the maximum demand of resources
of each process. Max[i,j] = k means that process Pi may
request at most k instances of resource type Rj.

§ Allocation: n x m matrix, indicates the no of instances of
resources of each type currently allocated to each process.
Allocation[i,j] = k means that Pi is currently allocated k
instances of resource type Rj.

§ Need: n x m matrix indicates the remaining resource need of
each process. Need[i,j] = k means Pi may need k more instances
of Rj to complete its task.
Need[i,j] = Max[i,j] – Allocation [i,j]

Safety Algorithm

63CMP325			PUCIT			Arif	Butt

• Used to determine whether or not a system is in safe
state.

• Check the system state and sees if there is any
process whose request can be fulfilled. If yes note it
down in safe sequence and then add its allocation
vector in available vector.

• So now we have got a new available vector with some
new instances of various resource types.

• The above step is repeated with all the processes
and finally either we will be able to finish all the
processes with a safe sequence OR we may get stuck.

• The safety algo returns safe or unsafe whatever
is applicable to the Bankers Algorithm.

Resource Request Algorithm

64CMP325			PUCIT			Arif	Butt

Let Requesti be the request vector for process Pi.
If Requesti [j] = k then Pi wants k instances of
resource type Rj.
1. If Requesti £ Needi then

go to step 2
else
report error (since process has exceeded its maximum claim).

2. If Requesti £ Available then
go to step 3

else
Pi must wait (since resources are not available).

3. Update system table:
Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

Resource Request Algorithm (cont…)

65CMP325			PUCIT			Arif	Butt

Now the Banker’s Algo invokes the safety algo with this

new system state and the safety algo tells the banking algo

whether the new state will be safe or not.

• If safe Þ the resources are allocated to Pi.

• If unsafe Þ Pi must wait, and the old resource-allocation

state is restored

Sample Problem

66CMP325			PUCIT			Arif	Butt

§ Five processes: P0 … P4

§ Three resource types: A (10 instances), B (5 instances), C (7
instances)

§ System state is shown below:

Process

P0

P1

P2

P3

P4

Available Vector

A B C
3 3 2

Allocation Matrix

A B C
0 1 0

2 0 0

3 0 2

2 1 1

0 0 2

Max Matrix

A B C
7 5 3

3 2 2

9 0 2

2 2 2

4 3 3

Sample Problem (cont…)

67CMP325			PUCIT			Arif	Butt

§ Needi = Maxi – Allocationi
§ Need matrix

Process A B C
P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

Sample Problem (cont…)

68CMP325			PUCIT			Arif	Butt

§ Safe	Sequence:	<>

Process

P0

P1

P2

P3

P4

Available
A B C
3 3 2

Allocation

A B C
0 1 0

2 0 0

3 0 2

2 1 1

0 0 2

Need

A B C
7 4 3

1 2 2

6 0 0

0 1 1

4 3 1

Sample Problem (cont…)

69CMP325			PUCIT			Arif	Butt

§ Safe	Sequence:	<P1>

Process

P0

P1

P2

P3

P4

Available
A B C
3 3 2
5 3 2

Allocation

A B C
0 1 0

2 0 0

3 0 2

2 1 1

0 0 2

Need

A B C
7 4 3

1 2 2

6 0 0

0 1 1

4 3 1

Sample Problem (cont…)

70CMP325			PUCIT			Arif	Butt

§ Safe	Sequence:	<P1,	P3>

Process

P0

P1

P2

P3

P4

Available
A B C
3 3 2
5 3 2
7 4 3

Allocation

A B C
0 1 0

2 0 0

3 0 2

2 1 1

0 0 2

Need

A B C
7 4 3

1 2 2

6 0 0

0 1 1

4 3 1

Sample Problem (cont…)

71CMP325			PUCIT			Arif	Butt

§ Safe	Sequence:	<P1,	P3,	P4>

Process

P0

P1

P2

P3

P4

Available
A B C
3 3 2
5 3 2
7 4 3
7 4 5

Allocation

A B C
0 1 0

2 0 0

3 0 2

2 1 1

0 0 2

Need

A B C
7 4 3

1 2 2

6 0 0

0 1 1

4 3 1

Sample Problem (cont…)

72CMP325			PUCIT			Arif	Butt

§ Safe	Sequence:	<P1,	P3,	P4,	P0>

Process

P0

P1

P2

P3

P4

Available
A B C
3 3 2
5 3 2
7 4 3
7 4 5
7 5 5

Allocation

A B C
0 1 0

2 0 0

3 0 2

2 1 1

0 0 2

Need

A B C
7 4 3

1 2 2

6 0 0

0 1 1

4 3 1

73CMP325			PUCIT			Arif	Butt

Sample Problem (cont…)
§ Final safe sequence:

<P1, P3, P4, P0, P2>
§ Not a unique sequence
§ Possible safe sequences for this example:

<P1,P3,P4,P0,P2>, <P1,P3,P4,P2,P0>,
<P1,P3,P2,P0,P4>, <P1,P3,P2,P4,P0>,
<P1,P3,P0,P2,P4>, <P1,P3,P0,P4,P2>

74CMP325			PUCIT			Arif	Butt

Sample Problem
§ Four processes: P1 … P4

§ Three resource types: A (9 instances), B (3 instances), C
(6 instances)

§ System state is shown below:

Process
P1

P2

P3

P4

Available Vector

A B C
0 1 1

Allocation Matrix

A B C
1 0 0
6 1 2
2 1 1
0 0 2

Max Matrix

A B C
3 2 2
6 1 3
3 1 4
4 2 2

75CMP325			PUCIT			Arif	Butt

Sample Problem
§ Five processes: P0 … P4

§ Three resource types: A (3 instances), B (14 instances), C
(12 instances), D (12 instances)

§ System state is shown below:

Process

P0

P1

P2

P3

P4

Allocation Matrix

A B C D
0 0 1 2

1 0 0 0

1 3 5 4

0 6 3 2

0 0 1 4

Max Matrix

A B C D
0 0 1 2

1 7 5 0

2 3 5 6

0 6 5 2

0 6 5 6

Available Vector

A B C D
1 5 2 0

76CMP325			PUCIT			Arif	Butt

Sample Problem
§ Consider the following snapshot of a system:

Answer the following questions using the banker’s algorithm:
a. What is the content of the matrix Need?
b. Is the system in a safe state?
c. If a request from process P1 arrives for (0,4,2,0), can the request be

granted immediately?

DETECTION
&

RECOVERY

77CMP325			PUCIT			Arif	Butt

78CMP325			PUCIT			Arif	Butt

Deadlock Detection and Recovery
Both prevention and avoidance of deadlock
lead to conservative allocation of resources,
with corresponding inefficiencies. Deadlock
detection takes the opposite approach:
• Make allocations liberally, allowing deadlock to

occur (on the assumption that it will be rare);
• Apply a detection algorithm periodically to check

for deadlock;
• Apply a recovery algorithm when necessary.

79CMP325			PUCIT			Arif	Butt

Deadlock Detection Algo for Single
Instance of each Resource Type

§ This algorithm use wait-for-graph that can be derived
from RAG.

§ To derive a wait for graph, you collapse the resource
node.

Pi ® Pj means Pi is waiting for Pj.
§ If a cycle exist in the wait for graph we say that a

deadlock exist.
§ To detect deadlock, the system maintains the wait for

graph and periodically invokes an algorithm that
searches for a cycle in the wait-for graph.

§ The algorithm is expensive—it requires an order of n2

operations, where n is the number of vertices in the
graph.

80CMP325			PUCIT			Arif	Butt

RAG and Wait for Graph

Resource-Allocation	Graph Corresponding	wait-for	graph

81CMP325			PUCIT			Arif	Butt

Deadlock Detection
How often should the detection algorithm be

invoked?
1. Every time a request for allocation cannot be

granted immediately—expensive but process
causing the deadlock is identified, along with
processes involved in deadlock.

2. Keep monitoring CPU usage, and when it goes
below a certain level, invoke the algorithm.

3. Run it periodically after a specified time interval.
4. Run the algo arbitrarily/randomly—In this case,

we may find a number of cycles in the system but
may not be able to find out which process has
created these cycles.

82CMP325			PUCIT			Arif	Butt

Deadlock Recovery
Recovery algorithms vary a lot in their severity:

1. Abort all deadlocked processes. Though drastic,
this is probably the most common approach!

2. Back-up all deadlocked processes. This requires
potentially expensive rollback mechanisms, and of
course the original deadlock may recur.

3. Abort deadlocked processes one at a time until the
deadlock no longer exists.

4. Preempt resources until the deadlock no longer
exists.

• With the last two approaches, processes or resources
are chosen to minimize the global “loss” to the set of
processes, by minimizing the loss of useful processing
with respect to relative priorities.

83CMP325			PUCIT			Arif	Butt

Deadlock Detection and Recovery
• When a detection algo determines that a

dead lock exists, it either let the operator
deal with the deadlock manually or recover
from dead lock automatically.

• There are two options for breaking a
deadlock:
1. Process Termination.

2. Resource Preemption.

84CMP325			PUCIT			Arif	Butt

Deadlock Detection and Recovery
Process Termination
§ Abort all deadlocked processes.
§ Abort one process at a time until the deadlock

cycle is eliminated. While selecting the victim
process consider the following issues:

1. Priority of a process.
2. How long the process has run.
3. Resources already used by a process.
4. Further resources the process needs to

complete.
5. How many child processes will be needed to

terminate.
6. Is the process interactive or batch?

85CMP325			PUCIT			Arif	Butt

Deadlock Detection and Recovery
Resource Preemption

In resource preemption, select a process and take back some
resources from that process and allocate those resources to
other requesting processes and bring the system out of
deadlock. Three important issues to be considered are:

§ Selecting a victim – Which resources and which
processes are to be preempted?

§ Rollback – If we preempt a resource from a process, what
should be done with that process? We need to return the
victim to some safe state from where it can be restarted
later on.

§ Starvation – There is a possibility that same process may
always be picked as victim, so to avoid this include number
of rollbacks in cost factor of victim selection.

SUMMARY

86CMP325			PUCIT			Arif	Butt

We’re done for now, but
Todo’s for you after this
lecture…

87CMP325			PUCIT			Arif	Butt

If you have problems visit me in counseling hours. . . .

• Go through the slides and Book Sections: 7.1 to 7.7
• Try solving the End Exercise Problems given at the end

of Chapter 7

