
6/14/17 1

Instructor:Arif Butt

Lecture # 24-25
Synchronization between Threads and Processes

Course: SYSTEM PROGRAMMING

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

06/14/17 2Punjab University College Of Information And Technology(PUCIT)

Today's Agenda
Instructor:Arif Butt

● Concurrent Programming using Threads/Processes

● Creating threads using Pthread API

● Thread Attributes

● Data Sharing among threads

● Critical Section Problem and its solution using pthread_mutex_t

● POSIX Semaphores

● Unnamed semaphores between threads and processes

● Named semaphores between threads and processes

● Condition Variables

● Thread Cancellation

06/14/17 3Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

CONCURRENT / PARALLEL

 PROGRAMMING

06/14/17 4Punjab University College Of Information And Technology (PUCIT)

Sequential Programming
Instructor:Arif Butt

● Sequential programming is executed line by line. All
computational task are executed in a sequence, one after an other.

1

4

3

2

06/14/17 5Punjab University College Of Information And Technology (PUCIT)

Concurrent Programming
Instructor:Arif Butt

● Multiple computational tasks are executed simultaneously in case
 of multiple CPUs, OR concurrently in case of single CPU.

1

2 3

4 5

06/14/17 6Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

 Concurrency Examples
● Web servers listen and accept a request and listen again.
● A f ile server listen for a f ile request, accept and till I/O is

 done listen for the other request.

 Ways to achieve concurrency :
● Multiple single threaded processes

● Multiple threads within a single process

● Single process multiple events

Concurrent Programming (cont...)

06/14/17 7Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● Multiple single threaded processes
● Use fork() to create a new process for handling every new

task, The child process serves the client process, while the
parent listens to the new request

● Possible only if each slave can operate in isolation
● Need IPC between processes
● Lot of memory and time required for process creation

Concurrent Programming (cont...)

06/14/17 8Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● Multiple threads within a single process
● Use pthreads to create threads within a single process
● Good if each slave need to shared data
● Cost of creating threads is low, and no IPC required

● Single process multiple events
● Use select() and poll() for asynchronous I/O. (event

driven model)
● Use non-blocking I/O, process repeatedly poll for I/O on any of

the connections it has opened and handles each request

Concurrent Programming (cont...)

06/14/17 9Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Processes and Threads
● Processes have two characteristics:

➢ Resource ownership - process includes a virtual

 address space to hold the process image

➢ Scheduling/execution - follows an execution path

 that may be interleaved with other processes

● These two characteristics are treated independently by the
 operating system.

● The unit of resource ownership is referred to as a process or
task

● The unit of dispatching is referred to as a thread or
lightweight process

06/14/17 10Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Single Threaded Process

06/14/17 11Punjab University College Of Information And Technology (PUCIT)

Multi-Threaded Process
Instructor:Arif Butt

 .A thread is an execution context that is independently scheduled, but
shares a single addresses space with other threads of the same process

Temporal Multi-threading:Only one thread of instruction can execute in any given
pipeline stage at a time.
Simultaneous Multi-threading (SMT/HT): More than one thread of instruction can
execute in any given pipeline stage at a time. (SMT/HT is a multi-threading on a super
scalar architecture.)

06/14/17 12Punjab University College Of Information And Technology (PUCIT)

Example of a Multithreaded Process Instructor:Arif Butt

Suppose we want to add eight numbers x
1
+ x

2
+ x

3
 + x

8

● In case of sequential programming there are seven addition
operations and if each operation take 1 CPU cycle,the entire
operation will take seven cycles.

● Suppose we have 4xCPUs or a 4xCore CPU. Now we can divide
the task and compute quickly:

 x
1
+ x

2
 + x

3
+x

4
 + x

5
+x

6
 + x

7
+x

8

CPU4+ ++

CPU 1

CPU1 CPU3CPU2

CPU2 +

CPU1

1st CPU cycle

2nd CPU cycle

3rd CPU cycle

06/14/17 13Punjab University College Of Information And Technology (PUCIT)

 Multi-Threaded Process
Instructor:Arif Butt

Threads within a process share :

● PID, PPID, PGID, SID, UID, GID

● Code and Data Section

● Global Variables

● errno variable

● Open f iles via PPFDT

● Signal Handlers

● Interval Timers

● CPU time consumed

● Resources Consumed

● Nice value

Threads have their own:

● Thread ID

● CPU Context (PC, and other registers)

● Stack

● State

● Priority

● Signal mask

06/14/17 14Punjab University College Of Information And Technology (PUCIT)

Single VS Multi Threaded Processes
Instructor:Arif Butt

06/14/17 15Punjab University College Of Information And Technology (PUCIT)

Single and Multi Threaded Processes
Instructor:Arif Butt

06/14/17 16Punjab University College Of Information And Technology (PUCIT)

Single and Multi Threaded Processes
Instructor:Arif Butt

06/14/17 17Punjab University College Of Information And Technology (PUCIT)

Threads and Processes
Instructor:Arif Butt

 Similarities between threads and processes:
● Like a process, a thread can also be in one of many

states (new, ready, running, block, terminated)
● Only one thread can be in running state (single CPU)
● Like a process a thread can create a child thread.

 Differences between threads and processes:
● No automatic protection in threads.
● Every process has its own address space, while all other

threads within a process executes within the same
address space.

06/14/17 18Punjab University College Of Information And Technology (PUCIT)

Threads and Operating Systems
Instructor:Arif Butt

06/14/17 19Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

THREAD TYPES

06/14/17 20Punjab University College Of Information And Technology (PUCIT)

User Level Threads
Instructor:Arif Butt

● A thread context consists of Stack Pointer, Program Counter and a set of
CPU registers. On a thread switch, context of the currently running thread is
saved. Thread Scheduler selects a new thread from Ready Queue.
Dispatcher dispatches and restores the context of the newly selected thread
from that thread's private stack. Use PC of new thread and start executing
instructions.

● Above tasks can be performed by a user program written in assembly
language and are called user level threads. If this code resides in OS kernel
then these are called kernel level threads.

● An application can be programmed to be multi threaded by using user level
thread libraries (e.g., Pthread, Win32 threads, Java threads, Solaris2 threads,
Mach C Threads) and Kernel is not aware of the existence of threads.

● These libraries contain code for:
➢ Thread creation and termination
➢ Thread scheduling
➢ Saving and restoring thread context
➢ Passing messages and data between threads
● By default an application begins with a single thread.

06/14/17 21Punjab University College Of Information And Technology (PUCIT)

User level Threads (cont...)
Instructor:Arif Butt

Advantages:
➢ Thread switching is fast as it is done by ULT library, thus

saving the overhead of two mode switches.
➢ Scheduling can be application specif ic instead of OS

specif ic
➢ ULT can be used even if the underlying platform doesn't

support multi-threading
Disadvantages:

➢ When a ULT make a blocking system call, kernel take it as
if the system call has been made by the process, so all
threads of that process are blocked.

➢ In pure ULT strategy, a multi threaded application cannot
take the advantage of multiple processors/cores.

06/14/17 22Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● Thread management is done by kernel and Kernel is aware of
threads. Kernel level threads are supported in almost all modern
operating systems e.g (Windows-7, Linux, Solaris,Tru64 UNIX,
Mac OS X).

● Advantages:
➢ When a KLT makes a blocking system call, only that thread

within the process is blocked.
➢ Can take the advantage of multiple processor/cores

● Disadvantage:
➢ Thread switching is slow as kernel is involved.
➢ An application uses KLT can't execute on non-multi-threaded

 Operating System.

Kernel Level Threads

06/14/17 23Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

THREAD
IMPLEMENTATION MODELS

06/14/17 24Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

There must exist a relationship between user thread and kernel
thread. The three common implementation models are:
ONE-to-ONE (1:1)
● GNU Linux threads follow this model; each thread is actually a

separate process in the kernel.
● Kernel schedules the threads just like it schedule processes.
● Threads are created with Linux clone() system call, which is a

generalization of fork() allowing new process to share the
memory space, f ile descriptors and signal handlers of the parent.

One-to-One (1:1) Model (Kernel lvl Threads)

06/14/17 25Punjab University College Of Information And Technology (PUCIT)

One-to-One Model (Kernel lvl Threads)
Instructor:Arif Butt

06/14/17 26Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● Many user threads per kernel thread, i.e., kernel sees just one
thread.

● All thread management is done by user level thread libraries.
 Advantages

➢ Thread management is done in user space, so it is eff icient.
 Disadvantages

➢ When a thread within a process makes a system call the entire
 process blocks.

➢ No advantage of multiple CPUs/cores.
➢ Most of the libraries are def icient in functionality, performance

 and robustness

Many-to-One (M:1)Model (User lvl Threads)

06/14/17 27Punjab University College Of Information And Technology (PUCIT)

Many-to-One Model (User lvl Threads)
Instructor:Arif Butt

06/14/17 28Punjab University College Of Information And Technology (PUCIT)

Many-to-Many (M:N) Model
Instructor:Arif Butt

➢ Multiple user threads are multiplexed over a smaller or equal number of
kernel threads. This model is a compromise between 1:1 and M:1

➢ User threads in the M:N model normally f loat among kernel threads – that
may run on whatever kernel thread is available when they become runnable

➢ Pretty complex to implement, and requires kernel support which Linux does
not provide at the time of this writing.

 Advantages:
➢ Design permits the kernel to distribute the threads of an application across

multiple CPUs, while eliminating the possible scaling problems associated
with applications that employ large number of threads.

➢ If one thread makes a blocking system call, kernel can schedule another.
Disadvantage:

➢ Task of thread scheduling is shared between the kernel and user-space
threading library, which must cooperate and communicate info with one
another.

➢ Managing signals according to the requirements of SUSv3 is also complex

06/14/17 29Punjab University College Of Information And Technology (PUCIT)

Many-to-Many Model
Instructor:Arif Butt

06/14/17 30Punjab University College Of Information And Technology (PUCIT)

Relationship Between Threads and Process
Instructor:Arif Butt

Threads:Processes Description Example System

1:1 Each thread of execution is a unique
process with its own address space and
resources.

Traditional Unix
implementation.

M:1 Multiple threads may be created and
executed within a process.

Windows 7, Linux, Solaris,
OS/2, OS/390, MACH OS x

1:M A thread may migrate from one process
environment to another. This allows a
thread to be easily moved among distinct
systems.

Ra(Clouds), Emerald

M:N Combines attributes of M:1 and 1:M
cases

TRIX

Process/Thread Migration. The movement of processes or threads among address
spaces on different machines has become a hot topic in recent years.

06/14/17 31Punjab University College Of Information And Technology (PUCIT)

Parallel Architecture
Instructor:Arif Butt

 Parallel processor

 SIMD
Each instruction is executed on
different set of data by different CPU
vector and array processors fall into
this category.

MIMD

Shared memory
(tightly coupled)

distributed memory
(loosely coupled)

clustersMaster/Slave SMP(Symmetric
Multi processors)

Distributed Memory: MPICH2
Shared Memory: OPENMP, openCL

06/14/17 32Punjab University College Of Information And Technology (PUCIT)

06/14/17 33

Instructor:Arif Butt

Linux has two main implementations of the Pthreads API
● LinuxThreads:

● This is the original Linux threading implementation, developed by Xavier leroy.
● Threads are created using a clone(), using which threads share virtual memory, f ile

descriptors, f ile system-related information (umask, root directory, pwd,...) and signal
disposition. However, threads don't share PIDs and PPIDs.

● In addition to the threads created by the application, LinuxThreads creates an additional
“manager” thread that handles thread creation and termination.
● Deviations from specif ied behaviour
● getpid() returns a different value in each of the threads of a process.
● getppid() returns the PID of the manager threads
● If one thread creates a child using fork(), then only the thread that created the child process can
wait() for it.

● If a thread calls exec(), then SUSv3 requires that all other threads are terminated. While this is not
so in LinuxThreads.

● Threads don't share PGIDs, and SIDs
● Threads don't share resource limits.
● Some versions of ps(1) show all of the threads in a process (including the manager thread) as separate

items with distinct PIDs
● CPU time returned by times() and resource usage information returned by getrusage() are per

thread.
● Threads don't share nice value set by setpriority().
● Interval timers created using setitimer() are not shared between the threads.

Linux Implementation of Pthreads

06/14/17 34Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● NPTL (Native POSIX Threads Library):
● This is the modern Linux threading implementation, developed by Ulrich

Drepper and Molnar as a successor to LinuxThreads.
● It adheres more closely to SUSv3 specif ication for Pthreads. Supported by

Linux 2.6
● Students are required to go through the advantages of NPTL over LinuxThreads

Linux Implementation of Pthreads

● To discover thread implementation on your machine/system give following command:
getconf GNU_LIBPTHREAD_VERSION

NPTL 2.5
getconf GNU_LIBC_VERSION

glibc 2.5

● On system that provides both NPTL and LinuxThreads, one may need to f ind out the
default implementation. Or one may want to change the current default.

● Students are required to do it at their own (Hint: LD_ASSUME_KERNEL)

06/14/17 35Punjab University College Of Information And Technology (PUCIT)

Pthread API
Instructor:Arif Butt

#include <pthread.h>
int pthread_create(pthread_t *tid, const pthread_attr_t
*attr, void *(*start)(void *), void *arg) ;

Returns 0 on success, or a positive Exxx value on error.

 1st argument: pthread_t *tid
● Each thread within a process is identif ied by a Thread ID,whose data type is
pthread_t

● On successful creation of a new thread, its ID is returned through the
pointer tid

2nd argument: const pthread_attr_t *attr
● This arguments specif ies the attributes of the newly created thread.
● Normally we pass NULL pointer for default attributes.
● We can specify these attributes by initializing a pthread_attr_t

variable that overrides the default.

06/14/17 36Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

3rd argument: void* (*start)(void*)
● The third argument is the thread start function, which let us pass one

pointer (to anything we want) to the thread function, and lets the
thread function to return one pointer (to anything we want)

● The child thread starts be calling this function and then terminates
either explicitly (by calling pthread_exit) or implicitly (by letting
this function return)

4th argument: void *arg
● Fourth argument is a pointer of type void which points to the value to

be passed to thread start function. It can be Null if you do not want to
pass any thing to the thread function, can also be address of a
structure if you want to pass multiple arguments.

Pthread API (cont...)

06/14/17 37Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

 #include <pthread.h>
 void pthread_exit(void *status);

● This function terminate the calling thread
● If the thread calling this function is not detached, its TID and exit

status are retained for a later pthread_join() call by some other
thread in the calling process.

● The pointer status must not point to an object that is local to the
calling thread (e.g an automatic variable in the thread start function)
since that object disappears when the thread terminates.

Ways for a thread to terminate:
● The thread function returns (the return value is the exit status of the thread)
● The thread function calls pthread_exit()
● The main thread returns or call exit()
● Any sibling thread calls exit()

Pthread API (cont...)

06/14/17 38Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

#include <pthread.h>
int pthread_join(pthread_t tid, void **retval);

On success return 0 and on error return errno

● A thread can wait for another thread to terminate by calling
pthread_join() function, similar to waitpid()

● 1st argument:
➢ It is the TID of thread for which we wish to wait. Unfortunately,

we have no way to wait for any of our threads like wait()
● 2nd argument:

➢ It can be NULL, if the parent thread is not interested in the return
value of the child thread. Otherwise, it can be a double pointer
which will point to the status argument of the pthread_exit()

Pthread API (cont...)

06/14/17 39Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

#include <pthread.h>
pthread_t pthread_self(void);
● Return TID of calling thread. No error.
● Since pthread_create() does not return the TID of the child

thread (as fork() do). This function is used to get the TID of a
thread (as getpid() do).

#include <pthread.h>
int pthread_equal(pthread_t t1,pthread_t2);

● This function compares the TID of t1 and t2.
● Return a nonzero value if t1 and t2 are equal otherwise zero.
● If t1 and t2 are not valid TIDs, behavior is undef ined.

Pthread API (cont...)

06/14/17 40Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

$ man 5 types.h
● The data type that end in _t are called primitive data types. Usually def ined in
/usr/include/sys/types.h .Their purpose is to prevent programs from using specif ic data types
(e.g int, short, long) to allow each implementation to choose which data type is required for a particular
system. You just have to recompile the application on another system.

pthread_t used to identify a thread

pthread_mutex_t used for mutex

pthread_cond_t used for condition variables

pthread_attr_t used to identify a thread attribute object

pthread_mutexattr_t used to identify a mutex attribute object

pthread_condattr_t used to identify a condition attribute object

pthread_rwlock_t used for read write lock

pthread_rwlockattr_t used for read write lock attributes

pthread_barrier_t used to identify a barrier

pathread_barrierattr_t used to define a barrier attribute object

pthread_once_t used for dynamic package installations

pthread_spinlock_t used to identify a spin lock

Pthread Data Types

06/14/17 41Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

BASIC
MULTI-THREADED PROGRAMS

06/14/17 42Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

/threadmgmt/threadbasics/t1.c
Main thread creates a child thread that prints X's in an inf inite loop, while the main thread prints O's in an
inf inite loop. Both executes concurrently. Press ctrl+c to quit.

void * MyThreadFunc(void *nothing){
 while(1){
 putchar('x'); } }

int main(){
pthread_t tid;
int rv = pthread_create(&tid, NULL, &MyThreadFunc, NULL);
if(rv != 0){

switch(rv){
case EAGAIN:

printf("EAGAIN\n");break;
case EINVAL:

printf("EINVAL\n");break;
case ENOMEM:

printf("ENOMEM\n");break;
 }exit(1); }

while(1){
putc('O', stdout);
return 0;
}

}

int putc(int c, FILE *stream)
int putchar(int c)

Example 1

06/14/17 43Punjab University College Of Information And Technology (PUCIT)

Compiling a multi-threaded program
Instructor:Arif Butt

● Use any editor to type your program and then to compile give following
command:

$ gcc -c t1.c
● Then link the resulting .o f ile with /usr/lib/libpthread.so library

$ gcc t1.o -o t1 -lpthread -D_REENTRANT

● The code will execute only on machines which have the thread library
installed on it

$./t1

06/14/17 44Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

/threadmgmt/threadbasics/t2.c
Main thread creates a thread, pass it a message and then wait for its termination. The child thread
 executes the function func(), displays the message and returns to main
void *func(void *);
int main(){
 char *msg = "Hello Students";
 pthread_t tid;
 int rv = pthread_create(&tid, NULL, &func, (void *)msg);
 if(rv != 0) {

printf("Thread creation failed\n");
exit(1);

 }
 pthread_join(tid, NULL);
 printf("Exiting the main function...\n");
 return 0;
}
void *func(void *args){
 char *msg = (char *)args;//must cast the parameter to what is needed
 printf("I m child thread & the message passed to me is: %s\n", msg);
 pthread_exit(NULL); //return NULL
}

Example 2

06/14/17 45Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

/threadmgmt/threadbasics/t3.c
Main thread creates two child threads, both threads execute the same function which receives a
pointer to a structure. The structure contains the xter to be displayed and the count

struct mystruct{
 char character;
 int count; };
void * func(void *);
int main(){
 pthread_t t1_id, t2_id;
 struct mystruct t1_args;
 struct mystruct t2_args;
// create child thread to print 30000 * x
 t1_args.character = 'x';
 t1_args.count = 30000;
 pthread_create(&t1_id, NULL, &func, (void*)&t1_args);
//create child thread to print 20000 o
 t2_args.character = 'o';
 t2_args.count = 20000;
 pthread_create(&t2_id, NULL, &func, (void *)&t2_args);
/*make sure that main thread wait for child threads*/
 pthread_join(t1_id, NULL);
 pthread_join(t2_id, NULL);
 printf("\n I am main thread. Bye!\n");
 return 0;}

void *MyThreadFunc(void *args){
 struct mystruct *p=(struct
 mystruct*)args;
 int i;
 for(i = 0; i < p->count; i++){
 putc(p->character, stdout);
 pthread_exit(NULL);

}

Example 3

06/14/17 46Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

/threadmgmt/threadbasics/t4.c
Main thread creates a child thread, and sends an integer value to the child thread, which sleeps
for that much seconds
void * func(void *);

int main(){

 int stime = 10;

 pthread_t tid;

 pthread_create(&tid, NULL, &func,(void*)stime);

 sleep(5);

 printf("Concurrrent execution: inside main thread...\n");

 pthread_join(tid, NULL);

 printf("I am main thread bye... \n");

 return 0;

}

void * func(void *args){

 Int stime = int(args);

 printf(“I am child thread and I will sleep for %i seconds \n”, stime);

 printf(“Sleeping...Zeeeeeeee \n”);

 sleep(stime);

 printf(“I am child thread and I am awake now... Good Bye! \n”);

 pthread_exit(NULL);

}

I am child thread and I will sleep for 10 seconds
Sleeping....Zeeeeeee
Concurrent execution: inside main thread...
I am child thread and I am awake now... Good Bye
I am main thread bye...

Example 4

06/14/17 47Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

We know that every thread function is declared to return a pointer of type void. We can
use following ways to return data from a thread function.

Returning Results From Threads

void *thread_function(void *args)
{

//receive arguments
//carry out processing

int *result = whatevercomputed;
return (void *)result;

}

This will fail because the variable result is local to the
thread function, i.e. it is created on the stack of this
particular thread and might not be available on the main
function's stack.

void *thread_function(void * args)
{

char buffer[64];
/*carryout processing & fill buffer
with something good*/

return buffer;
}

void *thread_function(void *args)
{

static char buffer[64];
//carryout processing & fill buffer
 with something good*/

return buffer;
}

This will also fails because the internal buffer is automatic
and it vanishes as soon as the thread_function()
returns.

Here the buffer is made static so that it will continue to
exist even after thread_function() terminates.
However, this will also fail, if multiple threads run the
same thread_function(). In this case the second
thread will over write the static buffer with its own data
and data written by the f irst thread will be over written.

Using global variables for returning values will also
suffer from the same limitation

06/14/17 48Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Returning Results From Threads (cont...)
void * thread_function(void * args){

 //receive arguments
 //carry out processing
 int *result = (int*)malloc(sizeof(int)); //for returning single integer

 int *result = (int*)malloc(sizeof(int)*size); //for returning an integer array

 char *result = (char*)malloc(sizeof(char)*size); //for returning a xter array

 pthread_exit((void*)result); // return (void *)result;

}

//Now let's receive the result in main

 int main() {

void *exit_status;

pthread_join(tid, &exit_status);

//now cast it to appropriate type and dereference it before using

int *answer = (int*)exit_status;

printf(“Answer from thread \n”,*answer);

--- }

06/14/17 49Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

threadmgmt/threadbasics/t5.c
Program receives an integer via cmd line. The main thread creates a child thread &
pass n to it. The child thread computes the sum of first n integers and return the value
to the main thread.
void *MyThreadFunc(void *);
int main(int argc, char *argv[]){
 if(argc != 2){
 printf("invalid arguments...\n");
 exit(1); }
 pthread_t tid;
 int args = atoi(argv[1]);
 void *exit_status;
 pthread_create(&tid, NULL, &MyThreadFunc, (void *)&args);
 pthread_join(tid, &exit_status);
 printf("\n Sum returned by child thread: %d\n",*(int*)exit_status);
 return 0;}
void *MyThreadFunc(void *args){
 int n = *((int *)args);
 int * result = (int*)malloc(sizeof(int));
 int i;
 for(i = 1; i <= n; i++)
 *result = *result + i;
 pthread_exit((void*)result);
}

Has to be a double ptr of void type

Example 5

06/14/17 50Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

threadmgmt/threadbasics/t6.c
Program creates an array of ten threads, each thread prints the argument passed to it

﻿#define NUM_THREADS 10
void * MyThreadFunc(void * arg);
int main(){
 pthread_t tid[NUM_THREADS];
 int i;

 for(i=0; i < NUM_THREADS; i++){
 pthread_create(&tid[i], NULL, MyThreadFunc, (void *)&i);
 pthread_join(tid[i], NULL);
}
 printf("main(): Reporting that all child threads have termineted\n");
 exit(0);
}

void * MyThreadFunc(void * arg)
{
 int i = *((int*)arg);
 printf("I am child thread number %d \n", i);
 pthread_exit(NULL);
}

Example 6

06/14/17 51Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

threadmgmt/threadbasics/t7.c
“The child thread computes nth prime number and return to main.”
void *MyThreadFunc(void*);
int main(int argc, char *argv[]){

if(argc != 2){printf("Error ...\n"); exit(1);}
pthread_t tid;
int args = atoi(argv[1]);
pthread_create(&tid, NULL, &MyThreadFunc, (void*)&args);
void *exit_status;
pthread_join(tid, &exit_status);
unsigned long * thread_result = (unsigned long*)exit_status;
printf("\n Main(): the %dth prime number is %d\n", args, thread_result);
return 0;

}

void *MyThreadFunc(void *args){
int n = *((int*)args);
unsigned long *candidate = (unsigned long *)malloc(sizeof(unsigned long));
*candidate = 2;
while(1) {

unsigned long factor ;
unsigned long is_prime = 1;
for(factor = 2; factor <= sqrt((*candidate)) ; ++factor){

if((*candidate) %2 == 0){is_prime = 0; break;}
} //end of for loop

 if(is_prime) {
 if(--n == 0)

 pthread_exit((void*)(candidate));
 }

 ++(*candidate);
 } //end of while loop
}

100 541
1000 7919
10000 104729
100000 1299709
1000000 15485863
10000000 179424673

Example 7

06/14/17 52Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

threadmgmt/threadbasics/t8.c
Take size of arrays via cmd line, create three arrays dynamically . Get I/P in arrays from user (you can take
I/p from files). Also create size number of threads. Now each thread should add two locations of arrays and
place result in corresponding third array. All arrays being global. Finally thread should display the result. ”

void * MyThreadFunc (void*);
int *arr1;
int *arr2;
int *result;
int mian(int argc, char *argv[]){

if(argc != 2){printf("invalid arguments...\n"); exit(1);}
int ctr = atoi(argv[1]);
arr1 = (int*)malloc(sizeof(int)*ctr);
arr2 = (int*)malloc(sizeof(int)*ctr);

 result = (int*)malloc(sizeof(int)*ctr);
int i;

 for(i = 0 ; i < ctr; i++)
scanf("%d",&arr1[i]);

for(i = 0; i < ctr; i++)
scanf("%d", &arr2[i]);

pthread_t *tid = (pthread_t*)malloc(sizeof(pthread_t)*ctr);
for(i = 0 ; i < ctr; i++)

pthread_create(&tid[i], NULL, &MyThreadFunc,(void*)i);
for(i = 0 ; i < ctr; i++)

pthread_join(tid[i],NULL);
printf("\n Main thread: The results are \n");

 sleep(5);
for(i = 0 ; i < ctr; i++)

printf("sum[%d] = %d", i, result[i]);
return 0;

}

void *MyThreadFunc(void *args)
{

int n = (int)args;
result[n] = arr1[n]+arr2[n];
pthread_exit(NULL);

}

Example 8

06/14/17 53Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

THREAD ATTRIBUTES

06/14/17 54Punjab University College Of Information And Technology (PUCIT)

Thread Attributes
Instructor:Arif Butt

● Every thread has a set of attributes which can be set before
creating it and passed to the pthread_create() function as
its second argument.

● If we pass a null pointer, the default thread attributes are
used to configure the new thread

Attribute Default value Description
detachstate PTHREAD_CREATE_JOINABLE joinable by other threads
stackaddr NULLL stack allocated by system
stacksize NULL 1 BM
priority NULL priority of calling thread
inheritsched PTHREAD_EXPLICIT_SCHED

06/14/17 55Punjab University College Of Information And Technology(PUCIT)

Thread Attributes Instructor:Arif Butt

● Steps to specify customized thread attributes:

● Create a pthread_attr_t object

● Call pthread_attr_init(), passing a pointer of above
object

● Modify the attribute object to contain the desired attribute value
using the appropriate setters.

● Pass a pointer to the attribute object when calling
pthread_create()

● Destroy pthread attribute object by calling
pthread_attr_destroy()

06/14/17 56Punjab University College Of Information And Technology(PUCIT)

Detach State (Avoiding Zombie Threads) Instructor:Arif Butt

 Most important attribute is the thread detach state having two values:
● Joinable Thread:

➢ A joinable thread (like a process) is not automatically cleaned up by
GNU/LINUX when it terminates

➢ The thread's exit status hangs around in system until another thread calls
pthread_join() to obtain its return value. Only then its resources are
released.

➢ For example whenever we want to return data from child thread to its parent
thread the child thread must be a joinable thread.

● Detached Thread:
➢ A detachable thread is cleaned up automatically when it terminates
➢ Since a detached thread is immediately cleaned up, another thread may not

synchronize on its completion by using pthread_join() to obtain its return
value

➢ For example suppose the main thread crates a child thread to do back up of a
file; while the main thread continues to service the user. When the backup is
finished , the second thread can just terminate. There is no need for it to rejoin
the main thread.

06/14/17 57Punjab University College Of Information And Technology(PUCIT)

Detach State
Instructor:Arif Butt

● The above two functions are used to get and set the state
attribute of a thread in the attribute object.

● The two possible detach states are:
➢ PTHREAD_CREATE_JOINABLE
➢ PTHREAD_CREATE_DETACHED

int pthread_attr_getdetachstate(const
 pthread_attr_t *attr, int *detachstate);

int pthread_attr_setdetachstate
 (pthread_attr_t*attr, int detachstate);

06/14/17 58Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

void *MyThreadFunc(void*);
char message[] = “Hello Students.”;
int thread_finished = 0;
int main(){

pthread_t tid;
//create an attribute object
pthread_attr_t thread_attr;
//initialize the attribute object to default values
pthread_attr_init(&thread_attr);
//modify attribute to detachstate
pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);
//create thread with modified attributes
pthread_create(&tid,&thread_attr,&MyThreadFunc,(void*)message);
//destroy attribute object
pthread_attribute_destroy(&thread_attr);
while(!thread_finished){

printf(“Waiting for thread to say, its finished...\n”);
sleep(1);

}
printf(“Main thread exiting, Bye!\n”);
exit(EXIT_SUCCESS);

}

Creating a detached thread: threadmgmt/threadbasics/tattr1.c

Example 9

06/14/17 59Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Creating a detached thread

//thread function of previous example
void *MyThreadFunc(void *arg){

printf(“Child thread is running. Received message%s\n”,(char*)arg);
sleep(4);
printf(“Child thread setting the finished flag, and exiting now\n”);
thread_finished=1;
pthread_exit(NULL);

}

Example 9 (cont...)

06/14/17 60Punjab University College Of Information And Technology(PUCIT)

Setters and Getters of pthread_attr_t object
Instructor:Arif Butt

Int pthread_attr_getschedpolicy(const pthread_attr_t
 *attr, int *policy);

int pthread_attr_setschedpolicy(pthread_attr_t
 *attr, int policy);

﻿int pthread_attr_getinheritsched(const pthread_attr_t
 *attr, int *inheritsched);

int pthread_attr_setinheritsched(pthread_attr_t
 *attr, int inheritsched);

int pthread_attr_getstacksize(const pthread_attr_t*
 attr, size_t *stacksize);

int pthread_attr_setstacksize(pthread_attr_t *attr,
 size_t stacksize);

06/14/17 61Punjab University College Of Information And Technology(PUCIT)

Sched Policy
Instructor:Arif Butt

6/14/17 62

Instructor:Arif Butt

Data Sharing Among Threads

Punjab University College Of Information And Technology (PUCIT)

6/14/17 63

Data Sharing Among Threads
Normally modifying an object requires several steps. While
these steps are being carried out the object is typically not in a
well formed state. If another thread tries to access the object
during that time, it will likely get a corrupt information. The
entire program might have undef ined behavior after wards.

 What data is shared?
● Global data and static local data. The case of static local data is

only signif icant if two (or more) threads execute the function
containing static local variable at the same time.

● Dynamically allocated data (in heap) that has had its address
put into a global/static variable.

● Data members of a class object that has two (or more) of its
member functions called by different threads at the same time.

Instructor:Arif Butt

Punjab University College Of Information And Technology (PUCIT)

6/14/17 64

Data Sharing among Threads (cont...)

Instructor:Arif Butt

What Data is not Shared ???
● Local variables are not shared. Even if two threads call the same function they

will have different copies of the local variable in that function. This is because
the local variables are kept on stack and every thread has its own stack.

● Function parameters are not shared. In Languages like C, the parameters of
function are also put on the stack & thus every thread will have its own copy
of those as well.

Threads share many data structures:Answer following Questions:
● What happens if one thread closes a f ile while another is still reading from it?

● What happens when one thread feels that there is too little memory & starts
allocating more memory, soon after wards another thread of same process
executes and do the same. Does the allocation happens once or twice?

Punjab University College Of Information And Technology (PUCIT)

6/14/17 65

Example 10
Instructor:Arif Butt

﻿char** ptr; //only one instance of global variable ptr
void * thread_function(void * localarg);
int main(){
 int i;//local auto variable
 pthread_t tid;
//msg is a local variable on main thread's stack
 char* msg[2] = {"Hello from Arif", "Hello from PUCIT"};
 ptr = msg;
 for(i=0;i<2;i++){
 pthread_create(&tid, NULL, thread_function, (void*)i);
 pthread_join(tid,NULL);
 }
 return 0;
}

void * thread_function(void * localarg){//localarg is local for each thread
 int myid = (int)localarg;//myid is local for each thread
 static int svar = 0;//static variable svar is shared among threads
//myid is local to all threads as it is created on their respective stacks
 printf("[%d]: %s (svar = %d)\n", myid, ptr[myid], ++svar);
 pthread_exit(NULL);
}

Punjab University College Of Information And Technology (PUCIT)

Checking shared data: threadmgmt/threadsynch/mutex/shareddata.c

6/14/17 66

Example 10 (cont...)
Instructor:Arif Butt

Punjab University College Of Information And Technology (PUCIT)

Analysis: A variable x is shared iff multiple threads reference at least one instance
of x either directly or indirectly

Variable Instance Referenced by main Referenced by t0 Referenced by t1

ptr yes yes yes shared

i yes no no

msg yes yes yes shared

myid.t0 no yes no

myid.t1 no no yes

svar no yes yes shared

6/14/17 67

Problem with Threads
Instructor:Arif Butt

 Synchronization means making two things / events happen at the
 same time. It has two constraints:

a) Serialization: Event A must happen before event B.

b) Mutual Exclusion: Event A and B must not happen at the same
 time.

i.Concurrent Programs are non-deterministic in nature, which
 means it is not possible to tell by looking at the program, what
 will be the output when it executes (e.g. two threads within a
 program, one prints “yes” & other “no”. What will be printed
 f irst).

Punjab University College Of Information And Technology (PUCIT)

6/14/17 68

Problem with Threads (cont...)

Instructor:Arif Butt

ii.Important Concepts

a)Race Condition: The situation where several threads are reading
or writing some shared data concurrently & the f inal value of the
data depends on which thread f inishes last.

b)Critical Section: A piece of code in cooperating threads/ processes
in which the threads may update some shared data.

c)Critical section Problem: If multiple threads try to execute their
CS section concurrently we need to execute them one by one
completely.

d)Atomic Operation: An operation which can not be preempted in
 between. e.g. LOAD, STORE, SWAP, TSL, are atomic operations. (An
operation that always runs to completion or not at all.)

6/14/17 69

Problem with Threads (cont...)

Instructor:Arif Butt

e) CSP Solution

f) Characteristics of good CSP Solution:
➢ Mutual Exclusion: If a process is executing in its CS, no other
 cooperating process or thread can execute their CS.

➢ Progress: If no process is executing in its CS, and some
 processes wish to enter in their critical section; two things need
 to happen:

i. No process in <RS> should participate in the decision.

ii. The decision has to be taken in f inite time.

➢ Bounded wait: If a processes has requested to enter in its CS a
bound must exist on the number of times that other processes are
allowed to enter in their CS before the request of 1st process is
granted.

6/14/17 70

Example 11
Instructor:Arif Butt

#include<pthread.h>
int balance = 0;
void *inc(void *arg);
void *dec(void *arg);
int main()
{

pthread_t t1,t2;
pthread_create(&t1,NULL,inc,NULL);

 pthread_create(&t2,NULL,dec,NULL);
pthread_join(t1,NULL);
pthread_join(t2,NULL);
printf("value of balance is: %i\n", balance);
return 0;

}

void * inc(void *arg)
{

long i;
for(i = 0; i< 1000000; i++)

balance++;
pthread_exit(NULL);

}

void * inc(void *arg)
{
 long i;
 for(i = 0; i< 1000000; i++)
 balance--;
 pthread_exit(NULL);
}

Showing race condition: threadmgmt/threadsynch/mutex/race1.c

06/14/17 71Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Synchronization among Threads
Mutexes

6/14/17 72

Mutexes
● To achieve both mutual exclusion as well as serialization,
GNU/Linux provides mutexes (Mutual Exclusion) or locks.

● A mutex is a special type of lock that only one thread may
lock at a time.

● If a thread locks a mutex & later a second thread also tries to
lock the same mutex, the second thread is blocked. When the
f irst thread unlocks the mutex, the second thread is allowed to
resume execution.

● Linux guarantees that race condition do not occur among
threads attempting to lock a mutex.

Instructor:Arif Butt

6/14/17 73

Typical way to use a mutex
i. Create and initialize a mutex variable

ii. Several threads attempt to lock the mutex

iii. Only one thread succeed and that thread owns the mutex

iv. The owner thread carry out operations on shared data

v. The owner threads unlock the mutex

vi. Another thread acquires the mutex and repeats the process

vii. Finally the mutex is destroyed

Instructor:Arif Butt

6/14/17 74

Typical way to use a mutex
Instructor:Arif Butt

6/14/17 75

Mutex Initialization
Static Initialization: In case where default mutex attributes are
appropriate, the following macro can be used to initialize a mutex
that is statically allocated.

static pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;

Instructor:Arif Butt

Run time initialization: In all other cases, we must dynamically
initialize the mutex using pthread_mutex_init()

int pthread_mutex_init (pthread_mutex_t* mptr,
 const pthread_mutexattr_t * attr);

6/14/17 76

Mutex Initialization
We must use pthread_mutex_init() rather than a static initializer
in the following scenarios:

● The mutex was dynamically allocated on the heap. For example,
suppose that we create a dynamically allocated linked list of structures,
and each structure in the list includes a pthread_mutex_t f ield that
holds a mutex that is used to protect access to that structure

● The mutex is an automatic variable allocated on the stack

● We want to initialize a statically allocated mutex with attributes other
than the defaults

Instructor:Arif Butt

6/14/17 77

Locking, unlocking and destroying mutexes

● Lock() will lock the mutex object referenced by mptr. If mutex is already
locked, the calling thread shall block until the mutex become available.

● Trylock() is similar to lock except that if the mutex object is currently
locked, the call shall return immediately with the error code EBUSY.

● Unlock() release the mutex object referenced by mptr. The manner in which
a mutex is released is dependent on the mutex's attribute type. If there are
threads blocked on the mutex object referenced by mptr when the unlock()
is called, the scheduling policy shall determine which thread shall acquire
the mutex.

● Destroy() shall destroy the mutex object referenced by mptr. The mutex
object becomes uninitialized. A destroyed mutex can be reinitialized using
pthread_mutex_init().

Instructor:Arif Butt

int pthread_mutex_lock(pthread_mutex_t *mptr);
int pthread_mutex_unlock(pthread_mutex_t *mptr);
int pthread_mutex_trylock(pthread_mutex_t *mptr);
int pthread_mutex_destroy(pthread_mutex_t *mptr);
// return 0 on success, else positive Exxx value on error

6/14/17 78

Mutex Dead Locks
Be sure to observe following points to avoid dead locks while
using mutexes:

i. No thread should attempt to lock or unlock a mutex that has not
been initialized.

ii. Only the owner thread of the mutex (i.e the one which has
locked the mutex) should unlock it

iii.Do not lock a mutex that is already locked

iv.Do not unlock a mutex that is not locked.

v. Do not destroy a locked mutex.

Instructor:Arif Butt

6/14/17 79

Example 12
Instructor:Arif Butt

#include<pthread.h>
int balance = 0;
void *inc(void *arg);
void *dec(void *arg);
pthread_mutex_t mut;
int main(){

pthread_t t1,t2;
 pthread_mutex_init(&mut, NULL);

pthread_create(&t1,NULL,inc,NULL);
 pthread_create(&t2,NULL,dec,NULL);

pthread_join(t1,NULL);
pthread_join(t2,NULL);

 pthread_mutex_destroy(&mut);
printf("value of balance is: %i\n", balance);
return 0;

}

void * inc(void *arg){
long i;
for(i = 0; i< 1000000; i++){

 pthread_mutex_lock(&mut);
 balance++;

 pthread_mutex_unlock(&mut);
 }

pthread_exit(NULL);
}

void * inc(void *arg){
 long i;
 for(i = 0; i< 1000000; i++){
 pthread_mutex_lock(&mut);
 balance--;
 pthread_mutex_unlock(&mut);
 }
 pthread_exit(NULL);
}

Handling race condition: threadmgmt/threadsynch/mutex/race1mutex.c

6/14/17 80

Instructor:Arif Butt

//threadmgmt/threadsynch/mutex/race2.c
int wordcount = 0;//global variable
void * count_words(void * arg);
int main(int argc, char* argv[]){
 if(argc != 3){
 printf("Must pass two file names...\n");
 exit(1);
 }
 pthread_t t1, t2;
 pthread_create(&t1, NULL, &count_words, (void*)argv[1]);
 pthread_create(&t2, NULL, &count_words,(void*)argv[2]);
 pthread_join(t1,NULL);
 pthread_join(t2,NULL);
 printf("Total Words: %d\n", wordcount);
 return 0;
}

Example 13
Program receives two file names via command line. Create two threads and pass them one file
name each. Both threads execute the function count_words() and update the global variable word
count. Finally main thread displays the final value of word count

6/14/17 81

Instructor:Arif Butt

void* count_words(void* args){
 char* filename = (char*)args;
 int fd = open(filename, O_RDONLY);
 char ch;
 char prevch = '\0';
 while((read(fd, &ch, 1)) != 0){
 if(!isalnum(ch) && isalnum(prevch))

 wordcount++;
 prevch = ch;
 }
 close(fd);
}

Example 13 (cont...)

6/14/17 82

Mutex Attributes
● A mutex has a set of attributes which can be set before
creating it and passed to the pthread_mutex_init()
function as its second argument. (which we have kept NULL
in previous examples)

● Various Pthreads functions can be used to initialize and
retrieve the attributes in a pthread_mutexattr_t object. We
won’t describe the prototypes of the various functions that
can be used to initialize the attributes in a
pthread_mutexattr_t object.

● However, on next slide we’ll brief ly describe one of the
attributes that can be set for a mutex: its type.

Instructor:Arif Butt

6/14/17 83

In case of a deadlock, behavior depends on type of mutex:

PTHREAD_MUTEX-DEFAULT (standard mutex)
● Locking an already locked mutex results in undef ined behavior.

● Unlocking an already unlocked mutex results in undef ined behavior.

● Unlocking a mutex that is not locked by calling thread results in undef ined behavior.

PTHREAD_MUTEX_NORMAL (fast mutex)
● Locking an already locked mutex results in deadlock.

● Unlocking an already unlocked mutex results in undef ined behavior.

● Unlocking a mutex that is not locked by calling thread results in undef ined behavior.

Instructor:Arif Butt

Mutex Attributes (cont...)

6/14/17 84

PTHREAD_MUTEX_ERRORCHECK (error checking mutex)
● Locking an already locked mutex returns an error.

● Unlocking an already unlocked mutex returns an error.

● Unlocking an mutex that is not locked by calling thread returns an error.

PTHREAD_MUTEX_RECURSIVE (recursive mutex)
● Mutex maintains a concept of lock count. When a thread successfully acquires a

mutex for the f irst time, the lock count is incremented by one. Each time the threads
unlock the mutex, the lock count is decremented by one. When the lock count
reaches zero, the mutex become available for other thread to acquire.

● Unlocking an unlocked mutex returns an error.

● Unlocking a mutex that is not locked by the calling thread results in undef ined
behavior.

Instructor:Arif Butt

Mutex Attributes (cont...)

06/14/17 85Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Producer Consumer Problem

06/14/17 86Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Producer-Consumer Problem
● Producer produces information that is consumed by a consumer

process.To allow producer and consumer run concurrently we must
have a buffer that can be f illed by the producer and emptied by the
consumer.The buffer can be bounded or unbounded.

● Unbounded Buffer: Places no practical limit on the size of the buffer.
The consumer may have to wait for new items if the buffer is empty,
but the producer can always produce new items.

● Bounded Buffer: Assumes a f ixed size buffer. The consumer must
wait if the buffer is empty and the producer must wait if the buffer is
full.

While an item is being added to or removed from the buffer, the buffer is
in an inconsistent state. Therefore, threads must have exclusive access to
the buffer. If a consumer thread arrives while the buffer is empty, it blocks
until a producer adds a new item.

06/14/17 87Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

● Implicit Synchronization:
 $ grep prog1.c | wc –l

➢ grep is the single producer and wc is the single consumer. The
required synchronization is handled implicitly by the kernel. grep
writes into the pipe and wc reads from the pipe. If producer get
ahead of the consumer (i.e. the pipe f ills up), the kernel puts the
producer to sleep when it calls write(), until more room is
available in the pipe. If consumer gets ahead of the producer (i.e.
the pipe is empty), the kernel puts the consumer to sleep when it
calls read(), until some data is there in the pipe.

● Explicit Synchronization:When we as programmers are using some
shared memory/data structure, we use some form of IPC between the
procedure and the consumer for data transfer. We also need to ensure
that some type of explicit synchronization must be performed between
the producer and consumer.

Producer-Consumer Problem

06/14/17 88Punjab University College Of Information And Technology(PUCIT)

 Description of Example:
● We have multiple producer threads and a single consumer

thread within a single process.
● A memory buffer buff is shared between producer threads and

consumer thread.
● Producer threads just set buff[0] to 0, buff[1] to 1 and so on.
● We do not start the consumer thread until all the producers are

done.
● Once the buffer is full, the only consumer thread goes through

this array and verif ies that each entry is correct.
● So we just need to synchronize between multiple producer

threads.

Example: Producer-Consumer Problem
Instructor:Arif Butt

Process

Producer-Consumer Example

Producer Thread 0

Producer Thread 1

Producer Thread 2

Producer Thread 9

Store items

 10000000

Buff[0]

Buff[1]

Buff[2]

0

1

2

fetch items

Consumer Thread

val

Each producer thread accesses the buffer at the
location pointed to by in and places the value
val at that location. Afterwards the thread
increments both the variables in and val. Finally
the thread also increment its own count

Consumer simply traverses the entire
buffer and checks whether index i contains
value i or not.

Instructor:Arif Butt

06/14/17 90Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Producer-Consumer Example
//threadmgmt/threadsynch/mutex/producerconsemer/prodcons1.c

#include<stdio.h>

#include<stdlib.h>

#include<pthread.h>

#define SIZE 10000000 //buffer size

#define MAXTHREADS 10 // total number of producer threads

struct myobject{

 pthread_mutex_t mutex;

 int buff[SIZE];

 int in; //next index where to store item in the buffer 0 to size

 int val; //next value to be stored in the buffer 0 to size

};

struct myobject shared;

void* produce(void*);

void* consume(void*);

06/14/17 91Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Producer-Consumer Example1(cont...)
int main(){

 pthread_mutex_init(&shared.mutex, NULL);

 shared.in = 0; shared.val = 0; int i = 0;

 pthread_t tid_producers[MAXTHREADS];

 pthread_t tid_consumer;

 int count[MAXTHREADS]; /*Will contain the number of items produced
//initialize the entire count array to zero and then pass the respective count
variable to produce function. /*

 for(i =0; i< MAXTHREADS; i++){

 count[i] = 0;

 pthread_create(&tid_produces[i],NULL,&produce,&count[i]);

 }

/*wait for all the producer threads and as each thread returns
print the number of items that particular thread has produced./*

 for(i =0; i< MAXTHREADS; i++){

 pthread_join(tid_producers[i], NULL);

 printf(“count [%d] = %d\n”, I, count[i]);

}

//start the only consumer thread and wait for its completion

 pthread_create(&tid_consumers, NULL, &consume, NULL);

 pthread_join(tid_consumer, NULL);

 return 0;

}

06/14/17 92Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Producer-Consumer Problemvoid * produce(void * args){
 while(1){
 pthread_mutex_lock(&shared.mutex);
 if(shared.in >= SIZE){
 pthread_mutex_unlock(&shared.mutex);
 return(NULL);

 } //if buffer is full, job is done and this producer thread
returns w/o creating any more item
 shared.buff[shared.in] = shared.val;

 shared.in ++;
 shared.val++;
 pthread_mutex_unlock(&shared.mutex);

 ((int) args) += 1; // this actually is incrementing the count of
items this thread has produced. Since each thread has its own counter
in the count array, so we have not included it in the CS
 }
}
/* no need of synchronization because only one consumer thread executes
this function and that too after all the producer threads have finished
 void* consume(void * args){
 int i;

 for(i = 0; i < SIZE; i++){
 if(shared.buff[i] != i)

 printf(“buf[%d] = %d\n”, i.shared.buff[i]);
 }

 return(NULL);
}

06/14/17 93Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Producer-Consumer Problem

Output:
$./prodcons1

Count[0] = 2466731
Count[1] = 1
Count[2] = 303104
Count[3] = 3264511
Count[4] = 2593791
Count[5] = 1371861
Count[6] = 0
Count[7] = 0
Count[8] = 0
Count[9] = 0

Total count of items produced is 10000000

If you comment the lock and unlock statements in
the produce() func, the program will execute
fast but the count of items produced will not be
10000000. This has been shown in prodconsrace.c

06/14/17 94Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Producer-Consumer Example 2

 //prodcons2.c

 Let us modify the previous example and start the consumer thread
 immediately after all the producer threads have started.

● Just cut the LOC where you are creating the consumer thread
and place it immediately after the LOC where you have created
the producer threads.

● Once you execute the above program, that the consumer will try
to consume the items that have yet not been produced.

● We must now synchronize the consumer with the producer to
make sure that the consumer must wait if buffer is empty. Or
should process only those data items that have already been
produced by the producer threads.

06/14/17 95Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Producer-Consumer Example 2

 //prodcons3.c
 void consume_wait(int i){

while(i){
pthread_mutex_lock(&shared.mutex);
if(i < shared.in){

pthread_mutex_unlock(&shared.mutex);
return;

} //if index variable i sent by consumer thread doesnot contain data yet consumer spins
pthread_mutex_unlock(&shared.mutex);
}

 }
 void * consume(void* args){

int i;
for(i = 0; i < SIZE; i++){
 consume_wait(i);//consumer calls wait() before fetching next item from the buffer

if(shared.buff[i] ! = i)
 printf(“buf[%d] = %d\n”, i. shared.buff[i]);

}
 return(NULL);
 }

Shared.in points to the location where
next item is to be placed, so if (i < in)
that means the thread can consume data
at index i, so it retunrs, otherwise the
consumer thread spins

06/14/17 96Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Points to ponder:
● The consume_wait() function must wait until the producers

have generated the ith item.
● What should consumer do when the desired item is not ready?
● Loop around locking and unlocking mutex each time. This is

 called spinning or polling and is a waste of CPU time.
● Consumer could sleep for a short amount of time, but we do not

 know how long to sleep.
● So we need another type of synchronization that lets a thread or

 process sleep until some event occurs.
● Logically we want to sleep inside the CS, but if the buffer is

 empty and the consumer go to sleep inside the CS, the producer
 will not be able to produce the item and the consumer will sleep
 forever.

Producer-Consumer Problem

06/14/17 97Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Synchronization among Threads
Condition Variables

06/14/17 98Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

● Condition variable enable a thread to sleep inside a CS. Any lock
 held by the thread is automatically released when the thread is put to
 sleep.

● A mutex is for locking and a condition variable is for waiting.
● We know that mutexes are used to protect critical regions of code, so

 that only one thread is executing with Critical Section at a particular
 instance of time.

● Sometimes a thread obtains a mutex lock and then discovers that it
 need to wait for some condition to be true. For example, a consumer
 thread wants to consume an item from an empty buffer and blocks
 there i.e. inside the CS. Now the producer cannot place item in buffer.

● Solution is condition variable, i.e. let the consumer sleep and release
 the lock so that producer can produce.

● Condition variables are given another name in some books that is
 monitors. It’s a programming language construct available in Java
 and not in C++.

Condition Variables/ Monitor

06/14/17 99Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

● Condition variables support three operations:
wait() release lock, goto sleep,reacquire lock after you are awoken up
signal() wake up a sleeping thread on this condition variable.
broadcast() wake up all waiters.

Note: With every condition variable there is an associated lock/mutex.
 Whenever a thread wants to invoke any of the above operations, it must hold
 the lock associated with that condition variable.

Condition Variables/ Monitor

06/14/17 100Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

● Monitor is a programming language construct that has been
implemented in number of programming languages like
Concurrent Pascal, Pascal-Plus, Module-2, Module-3 and Java.The
concept was f irst def ined by Hoare, C in 1970.

● A monitor is similar to a class that ties data and operation
together. It can contain procedures, initialization code and shared
data.

● A monitor is similar to a class in sense that its private data can
only be accessed by its methods.

● A monitor is different from a class in same sense that it allows
only a single process at a time to execute its procedure.

● In order to turn a Java class into a monitor:
● Make all data private.
● Make all methods synchronized.

Monitor

06/14/17 101Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Structure of Monitor

06/14/17 102Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

● Condition variable is a variable of type pthread_cond_t on which a
 thread can call wait(), signal(), broadcast().

● Every call to pthread_cond_wait() should be done as part of a
conditional statement. e.g.

● There is a serious race condition as the f lag must have been shared between
the producers and the consumer threads. so,

Pthread Condition Variables

int pthread_cond_wait(pthread_cond_t *cptr, pthread_mutex_t *mptr);

int pthread_cond_signal(pthread_cond_t *cptr);

int pthread_cond_broadcast(pthread_cond_t *cptr);

 if(flag == 0)

 pthread_cond_wait(…);

pthread_mutex_lock(&mutex);

if(flag == 0)

 pthread_cond_wait(&condition, &mutex);

pthread_mutex_unlock(&mutex);

06/14/17 103Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

● The thread that signals this condition will use the same mutex to
 gain exclusive access to the f lag. Thus there is no way that the
 signaling could occur between the test of the f lag and waiting on
 the condition.

● For above code to work, pthread_cond_wait() needs to wait on
 the condition and unlock the mutex as an atomic action. It does
 this, but it needs to know which mutex to unlock. Hence the need
 of the 2nd parameter of pthread_cond_wait().

● When the condition is signaled, pthread_cond_wait() will lock
the mutex again before returning so that the
pthread_mutex_unlock() in above example is appropriate.

Pthread Condition Variables

06/14/17 104Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

● Here is how the signaling thread might look like:

● pthread_cond_signal()releases only one thread at a time. In some
 cases it is desirable to release all threads waiting on a condition. This can
 be done using pthread_cond_broadcast()

Pthread Condition Variables

pthread_mutex_lock(&mutex);

flag = 1;

pthread_mutex_unlock(&mutex);

pthread_cond_signal(&condition);

pthread_mutex_lock(&mutex);

flag = 1;

pthread_mutex_unlock(&mutex);

pthread_cond_broadcast(&condition);

06/14/17 105Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

 Problem:
● Under certain conditions the wait() function might return even

 though the condition variables has not actually been signaled.
● For example, if a Linux process receives a signal, the thread blocked

 in pthread_cond_wait() might be elected to process the signal
 handling function. Thus the thread might come out of wait() (which
 should not happen).

 Solution:
● A solution to this problem is simply retest the condition after

 pthread_cond_wait() returns. This is most easily done using a
 while loop, e.g.

Pthread Condition Variables

pthread_mutex_lock(&mutex);

while(flag == 0) pthread_cond_wait(&condition, &mutex);

pthread_mutex_unlock(&mutex);

06/14/17 106Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Threads Safety

06/14/17 107Punjab University College Of Information And Technology(PUCIT)

Threads Safety
Instructor:Arif Butt

● Functions called from a thread must be thread safe. There are four

classes of thread unsafe functions:

Class I: Failing to protect sheared variables.

 (Solution: Use Locks to protect shared variable)

Class II: Relying on persistent state across invocations.

Class III: Returning a pointer to a static variable.

Class IV: Calling a thread unsafe function.

 (Solution: Do Not Call Thread unsafe Functions.)

06/14/17 108Punjab University College Of Information And Technology(PUCIT)

Threads Safety(cont...)
Instructor:Arif Butt

Solution to Class II:
● e.g. random number generator functions relies on static state.
● Solution is rewrite functions so that call passes all necessary state as
argument. i.e. caller keep with itself the seed and passes it as argument to
rand.
Limitation: you need to change interface of function if it already exists in library. Moreover if

previous function is used by programs, you need to change them and recompile.

// rand- return pseudo random integer
int rand(){

static unsigned int next = 1;
next = next *1103515245 + 12345;
return (unsigned int) (next/65536) % 32768;

}
// srand – set seed for rand()
void srand (unsigned int seed){

next = seed;
}

06/14/17 109Punjab University College Of Information And Technology(PUCIT)

Threads Safety(cont...)
Instructor:Arif Butt

 Solution to Class III: (Function that returns a pointer to static
 variable)e.g.

● DNS name resolution functions in LINUX.

● It uses a static variable where it stores the name of the host. So if
this function is called by various threads then problem may arise
i.e one thread requesting IP of “condor” may get IP of
“linuxclient” which another thread has requested for.

● Fix 1: Rewrite the library function

● Issue is require changes in caller as well as in callee.

struct hostent* gethostbyname(const char* name);

int gethostbyname_r(const char *name,struct
hostent *ret, char *buf,size_t buflen,struct
hostent **result, int *h_errnop);

06/14/17 110Punjab University College Of Information And Technology(PUCIT)

Threads Safety(cont...)
Instructor:Arif Butt

 Solution to Class III: (Function that returns a pointer to static
 variable)

● Fix 2: Lock and Copy
● This requires only simple changes in caller and none in callee.
● Write a wrapper function around gethostbyname()

● All threads will call gethostbyname_ts() instead of
gethostbyname()

struct hostent* gethostbyname_ts(const char* name){
 struct hostent* q = malloc(---);
 wait(&mutex); //lock
 p = gethostbyname(name);
 *q = *p; //copy
 signal(&mutex); //unlock
 return q;
}

06/14/17 111Punjab University College Of Information And Technology(PUCIT)

REENTRANT Functions/Code
Instructor:Arif Butt

● A function is REENTRANT if and only if it accesses NO shared
variable when called from multiple threads.

● REENTRANT functions are proper subset of the set of thread
safe functions.

● Not all threads safe functions are REENTRANT.

Thread Safe Library Functions
a) All functions in Standard C Library are thread safe; e.g.

 malloc(), free(), printf(), scanf(), …
b) Most UNIX calls are thread safe with a few exceptions.

REENTRANT functions

Thread safe functions

06/14/17 112Punjab University College Of Information And Technology(PUCIT)

REENTRANT Functions/Code (cont...)
Instructor:Arif Butt

● So always compile your multi-threaded code with _REENTRANT def ined:
$gcc -c thread1.c -D_REENTRANT
$gcc thread1.o -o thread1 -lpthread

OR
$gcc thread1.c -o thread1 -lpthread -D_REENTRANT

Thread Unsafe Functions Thread Safe Functions
(REENTRAMT versions)

asctime() asctime_r()

ctime() ctime_r()

gethostbyname() gethostbyname_r()

gethostbyaddr() gethostbyaddr_r()

inet_ntoa() ----

localtime() localtime_r()

rand() rand_r

06/14/17 113Punjab University College Of Information And Technology(PUCIT)

QUESTION 1
Instructor:Arif Butt

Errno is a global variable used in UNIX systems. What problem can

occur due to this shared variable in mutli-threaded program?

06/14/17 114Punjab University College Of Information And Technology(PUCIT)

ANSWER 1
Instructor:Arif Butt

● If all threads were to store error codes in the same global

errno variable, then the value of errno after system call

or library function would be unpredictable.
● It may be possible that between the time a system call

stores its errno and your code inspect this global variable

to see which error has occurred, another thread might

have stored another code in the same errno variable.

06/14/17 115Punjab University College Of Information And Technology(PUCIT)

$100 QUESTION 2
Instructor:Arif Butt

Why all multi-threaded code must be compiled with

-D_REENTRANT def ined? What difference does it make?

06/14/17 116Punjab University College Of Information And Technology(PUCIT)

ANSWER 2
Instructor:Arif Butt

● It affects include f ile in three ways:
i. If _REENTRANT is def ined, the include f iles def ine prototypes for

 the _REENTRANT variant of some of the standard library functions
 e.g. gethostbyname_r() as a _REENTRANT equivalent to
 gethostbyname()

ii. If _REENTRANT is def ined, some <stdio.h> library
 functions are no longer def ined as macro; e.g. getc() and
 putc(). In multi-threaded programs, <stdio.h> library
 functions require additional locking which macros’ don't perform,
 so we must call function instead.

iii. If _REENTRANT is def ined, <errno.h> library redef ines errno, so
 that errno refers to thread specif ic error location rather than global
 variable. This is achieved by the following:

Which causes each reference to errno to call _errno_location() function for obtaining location
where error codes are stored.#define errno(*(_errno_location()))

06/14/17 117Punjab University College Of Information And Technology(PUCIT)

QUESTION 3
Instructor:Arif Butt

 Consider a multi-threaded code containing read() system

call.What happens if it is not compiled with -D_REENTRANT?

06/14/17 118Punjab University College Of Information And Technology(PUCIT)

ANSWER 3 Instructor:Arif Butt

do{
r = read(fd, buf, n);
if (r == -1){

if (errno == EINTR)
continue;

else{
perror(“read fail”);
exit(100);

}
}

}while(...);
Remember, C Library itself is compiled with -D_REENTRANT, read() stores its
error code in location pointed to by _errno_location(), which is the thread
local errno variable.

Now, consider above code and lets assume that when a thread is executing the
function read() it is interrupted. read() returns -1 and sets errno to EINTR. Since
_REENTRANT is not def ined in your application, the reference to errno accesses
global errno variable, which is most likely 0. Hence the code prints error message and
exits.

06/14/17 119Punjab University College Of Information And Technology(PUCIT)

QUESTION 4
Instructor:Arif Butt

If a child process closes a f ile descriptor inherited from the parent,

that f ile descriptor is still open for the parent.

In a multithreaded program if the same f ile descriptor is passed to

two threads, if one of the thread closes the descriptor, what happens?

06/14/17 120Punjab University College Of Information And Technology(PUCIT)

QUESTION 5
Instructor:Arif Butt

If one of the threads executes the exec() system call, what happens?

If one of the threads calls exit(),what happens?

If a thread causes a segmentation violation, the thread crashes. What

about the process?

If a signal is sent to a multi-threaded process. Which thread will

receive that signal?

06/14/17 121Punjab University College Of Information And Technology(PUCIT)

QUESTION 6
Instructor:Arif Butt

If one thread executes the fork() system call, does the new process

duplicate only the calling thread or all threads? Is it single

threaded or multi-threaded?

06/14/17 122Punjab University College Of Information And Technology(PUCIT)

$100 ANSWER !!!
Instructor:Arif Butt

● Some UNIX systems implement it both ways by having two

 versions of fork():

a) One that duplicates all threads.

b) Other that duplicates only the thread that invoked the fork().
● If exec() after fork(), then replace only the calling thread, as the

 new process will replace the whole calling process anyway.
● If no exec() after fork(), then duplicates the whole process with

 all the threads, not just the calling thread.
● Write a program to check what is the default behavior of your

Linux implementation

06/14/17 123Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Thread Cancellation

06/14/17 124Punjab University College Of Information And Technology(PUCIT)

Thread Cancellation
Instructor:Arif Butt

● A process can terminate:
i. If main function execute return statement.
ii. If any of the thread call exit()
iii.A process receives a term signal

● It is possible for a thread to request that another thread
terminate. This is called canceling a thread. e.g., Suppose
multiple threads are searching through a database, if one
thread returns data, remaining threads might be cancelled.

● Thread to be cancelled is called the target thread.

06/14/17 125Punjab University College Of Information And Technology(PUCIT)

Thread Cancellation(cont...)
Instructor:Arif Butt

Problems:
● Often a thread may be in some code that must be executed in all-or

nothing fashion. e.g., a thread may allocate some resources, use them
and then deallocate them. If the thread is cancelled in middle of this
code, resources don't get deallocated. To counter this possibility, it is
possible for a thread to control whether and when it can be cancelled. A
thread may be in one of three states with regard to thread cancellation.

➢ A thread may be asynchronously cancelable i.e., thread may be
cancelled at any point in its execution.

➢ A thread may be synchronously cancelable. A thread may be
cancelled but NOT at any point in its execution. The particular places
in a thread's execution where that thread can be cancelled are called
cancellation points. The thread will queue a cancellation request until
it reaches next cancellation point.

➢ A thread may be uncancellable i.e., attempts to cancel thread are
quietly ignored.

06/14/17 126Punjab University College Of Information And Technology(PUCIT)

Thread Cancellation(cont...)
Instructor:Arif Butt

● A thread calls pthread_cancel() to request that another thread
 be cancelled.

● The target thread's type and cancel-ability state determine the
 result.

● The above function doesn't cause the caller to block while the
 cancellation completes, rather, pthread_cancel() returns
 after making the cancellation.

● Other related functions are:
 pthread_setcancelstate()
 pthread_setcanceltype()
 pthread_testcancel()

int pthread_cancel(pthread_t tid);
Returns: 0 on success and nonzero on error

06/14/17 127Punjab University College Of Information And Technology(PUCIT)

Thread Cancellation(cont...)
Instructor:Arif Butt

● pthread_setcancelstate() system call changes the cancel

ability state of the calling thread
● Possible values of states are

➢ PTHREAD_CANCEL_ENABLE

➢ PTHREAD_CANCEL_DISABLE

● On success, it returns 0,
● On failure it returns non-zero value.

int pthread_setcanelstate(int newState,
 int *oldState);

06/14/17 128Punjab University College Of Information And Technology(PUCIT)

Thread Cancellation(cont...)
Instructor:Arif Butt

● pthread_setcanceltype() system call changes the

 cancel ability type of the calling thread
● Possible values of states are

➢ PTHREAD_CANCEL_DEFERRED

➢ PTHREAD_CANCEL_ASYNCHRONOUS

● On success, it returns 0,
● On failure it returns non-zero value.

int pthread_setcanceltype(int newType, int *oldType);

06/14/17 129Punjab University College Of Information And Technology(PUCIT)

Thread Cancellation(cont...)
Instructor:Arif Butt

● pthread_testcancel() creates a cancellation point in the

calling thread.
● It has no effect if cancel ability is disabled. (it is used when a

thread is synchronously cancel able.)

void pthread_testcancel(void);

06/14/17 130Punjab University College Of Information And Technology(PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130

