
C-Refresher: Session 02
GNU Debugger

Arif Butt
Summer 2017

I am Thankful to my student Muhammad Zubair bcsf14m029@pucit.edu.pk for preparation of
these slides in accordance with my video lectures at

http://www.arifbutt.me/category/c-behind-the-curtain/

mailto:bcsf14m029@pucit.edu.pk
http://www.arifbutt.me/category/c-behind-the-curtain/

Today’s Agenda

• Debugging

• gdb Debugger

• Working with gdb

• Finding Bugs in a Program

• Assembly Code of Program using gdb Debugger

• Working of Stack

Muhammad Arif Butt (PUCIT) 2

Debugging

Debugging is a science or art of eliminating the
bugs in a computer
program.
There are a lot of
debugging tools having
both the command line
and GUI interfaces

Muhammad Arif Butt (PUCIT) 3

Debugging a cyclic process

Debugger:
Debugger is a computer program running another
computer program in it. A debugger assists in the
detection and correction of errors in a computer
program.

Types of Debuggers:
gdb – the GNU debugger, Firefox JavaScript
debugger, Microsoft visual studio debugger and many
more.

Muhammad Arif Butt (PUCIT) 4

Debugging(cont…)

Muhammad Arif Butt (PUCIT) 5

• gdb allows you to see what is going on inside another
program while it executes, or what another program
was doing at the moment it crashed

• gdb can be used to debug programs written in C, C++,
FORTRAN and Modula-2

• gdb allows you to run the program up to a certain
point, then stop and print out the values of certain
variables at that point, or step through the program
one line at a time and print out the values of each
variable after executing each line

gdb – the GNU debugger

Four main things gdb can do

1. Start your program, specifying anything that
might affect its behaviour

2. Make your program stop on specified conditions

3. Examine what has happened, when your program
has stopped

4. Change things in your program, so you can
experiment with correcting the effects of one
bug and go on to learn about another

Muhammad Arif Butt (PUCIT) 6

gdb – the GNU debugger(cont…)

• For using gdb it must be installed first, if it is not
installed, install it using command
$ sudo apt-get install libc6-dbg gdb valgrind

• Command to start gdb

$ gdb

• To avoid this

additional info use –q

option with gdb like
$ gdb -q

Muhammad Arif Butt (PUCIT) 7

Working with gdb

• gdb is an interactive program, it waits for the
commands from the user to execute

• To execute a shell command in gdb it must be
proceeded with the bang sign(!)

• e.g.
(gdb) !clear

• clear is a shell command for clearing the screen, so
it has been proceeded with the bang sign

Muhammad Arif Butt (PUCIT) 8

Working with gdb(cont…)

Command Description

file [executable file name] To load a program executable file in gdb

help Displays the classes of commands

help [class name] List of commands in a specified class

list Show the contents of the program loaded in gdb

info inferiors Displays program(s) loaded in gdb

add-inferior –exec

[executable file name]

To load more than one program in gdb

inferior [program

number]

To switch to a specific program

run [cmd line args] To run/execute the program with cmd line args
if needed

Muhammad Arif Butt (PUCIT) 9

Important gdb commands

Command Description

watch [variable name] Interrupts the execution of the program when
the value of the variable changes

break [line number] Apply break point at a specific line

info break Displays the classes of commands

continue or c To continue the program execution till the
program end or the next breakpoint

next or n To execute the next instruction

backtrace or bt Displays the contents of the program stack

finish To execute till the end of current function and
return to the previous frame in stack

Muhammad Arif Butt (PUCIT) 10

Important gdb commands

Muhammad Arif Butt (PUCIT) 11

/*prog1.c…we will be using this example program for

understanding gdb commands*/

1. #include<stdio.h>

2. int main(){

3. int n;

4. printf("Enter a number: ");

5. scanf("%d",&n);

6. for(int i=0 ; i<n ; i++){

7. printf("Learning Linux is fun!\n");

8. }

9. return 0;

10. }

Working with gdb(cont…)

• For a program to be loaded in gdb it must be compiled
using –g or -ggdb option

• e.g.
$gcc –g prog1.c –o prog1 or $gcc –ggdb prog1.c –o

prog1

Now the program can be loaded in gdb in three ways:

1. While starting gdb give the program executable
filename as argument, like

$gdb prog1

2. Using file command of gdb after gdb has been started
(gdb) file prog1

Muhammad Arif Butt (PUCIT) 12

Working with gdb(cont…)

3. Using attach command and giving PID of some running
process as argument

• Syntax
(gdb) attach [PID]

• Let’s suppose we run a program top

$ top //displays Linux processes

• We can get the PID of running processes using command
$ ps –au

• Now the process can be loaded in gdb using command
(gdb) attach [PID]

Muhammad Arif Butt (PUCIT) 13

Working with gdb(cont…)

Muhammad Arif Butt (PUCIT) 14

Working with gdb(cont…)

• As we can see here that top command is running and its
PID is 26198

• So to load it in gdb we have to use the command
(gdb) attach 26198

inferior

• gdb lets you load more than one programs in a single
session and switch focus between them

• gdb does this with the object inferior like inferior

1, inferior 2, inferior 3 …

• Command for loading a process after the first process has
been loaded is

(gdb) add-inferior –exec prog2 /*where
prog2 is the name of executable file for prog2.c*/

Muhammad Arif Butt (PUCIT) 15

Working with gdb(cont…)

• Command used to show loaded programs is

(gdb) info inferiors

• Command to switch focus from one program to another is

(gdb) inferior [inferior number]

Muhammad Arif Butt (PUCIT) 16

Working with gdb(cont…)

Muhammad Arif Butt (PUCIT) 17

Working with gdb(cont…)

An example showing working of inferior command

run

• After a program has been loaded in gdb, it can be
executed using run command

• Syntax
(gdb) run [cmd line arguments]

•Note: If there are more than one programs loaded in
gdb then only one program can be executed at a time
and the program having focus on it will be executed
by run command

Muhammad Arif Butt (PUCIT) 18

Working with gdb(cont…)

list

• list command is used to display the contents of the
program loaded in gdb and currently having focus on it

• e.g.

Muhammad Arif Butt (PUCIT) 19

Working with gdb(cont…)

help

• help command in gdb is used to display the list of
classes of commands

Muhammad Arif Butt (PUCIT) 20

Working with gdb(cont…)

• Syntax to display the list of commands in a class is
(gdb) help [class name]

• e.g.(gdb) help data//display all commands in data class

• Syntax to display the list of all commands
help all

• Syntax to display the documentation of a specific
command is
(gdb) help [command name]

• e.g. (gdb) help list /* will display a full
documentation of list command */

Muhammad Arif Butt (PUCIT) 21

Working with gdb(cont…)

print

• print command is used to print the value of an expression
or variable passed as argument to it

• print command is generally used to print the values of
variables while debugging the program

• Syntax
(gdb) print [expression/variable name]

• e.g. standing at line 7 in prog1.c to check the value of n

and i we will type

(gdb) print n //result will be the value entered
(gdb) print i //result will be 0 for the first time

Muhammad Arif Butt (PUCIT) 22

Working with gdb(cont…)

• To print the value in hex format use /x option with the
print command like

(gdb) print /x n /*will print the value of n in hex
format*/

• To print the value in octal format use /o option with the
print command like

(gdb) print /o n /*will print the value of n in
octal format*/

• To print the value in binary format use /t option with the
print command like

(gdb) print /t n /*will print the value of n in
binary format*/ 23

Working with gdb(cont…)

• To print the value of some register in hex use /x option
with print command and also use $ sign with the name of
the register

• e.g. rip is a register that holds the address of the next
instruction to be executed, to display its value we can
write
(gdb) print /x $rip

Muhammad Arif Butt (PUCIT) 24

Working with gdb(cont…)

whatis
• whatis is a gdb command used to display the datatype of

some variable

• e.g.
(gdb) whatis n //will display the following result
type = int

set
• set is a gdb command used to temporarily set the value of

some variable for debugging purposes

• e.g. (gdb) set variable i=5 or (gdb) set [i=5] /*will
set the value of i=5 at that point*/

Muhammad Arif Butt (PUCIT) 25

Working with gdb(cont…)

Watchpoint:

• A watchpoint pauses execution of a program whenever
the value of a certain expression/variable changes

• watch command is used to apply watchpoints

• Syntax
(gdb) watch [expression]

• e.g. in program prog1.c

(gdb) watch i /*will apply watchpoint on variable i

and will interrupt whenever the value of i changes*/

Muhammad Arif Butt (PUCIT) 26

Working with gdb(cont…)

Breakpoint:

• Breakpoint can be applied at any line or function by giving
the line number or the function name as argument

• When we apply a breakpoint, it pauses the execution of
the program when the program reaches that point

• break command of gdb can be used for applying
breakpoints in a program

• Syntax
(gdb) break [line number/function name] or
(gdb) break prog1.c:[line number/function name]

• The second one should be used if there are more than one
programs loaded in gdb

Muhammad Arif Butt (PUCIT) 27

Working with gdb(cont…)

• Breakpoints may be more than one in a program

• To display the list of all breakpoints in a program use
command
(gdb) info break

• To disable a breakpoint use command
(gdb) disable [break number]

• And to enable a breakpoint
(gdb) enable [break number]

• To delete a breakpoint
(gdb) delete [break number]

Muhammad Arif Butt (PUCIT) 28

Working with gdb(cont…)

Muhammad Arif Butt (PUCIT) 29

Working with gdb(cont…)

continue

• continue is a gdb command that is used to continue the
execution of program till the end or till some breakpoint

• Syntax
(gdb) continue or (gdb) c

next

• next is also a gdb command used to execute the very next
program instruction/line

• Syntax
(gdb) next or (gdb) n

Muhammad Arif Butt (PUCIT) 30

Working with gdb(cont…)

Note:
• In gdb, simply pressing ENTER will execute the

command that was last executed

• e.g.
• we execute the command
(gdb) next

• After executing this command, no need to type next

again to execute the next command, rather simply
press ENTER and the next command will be executed
again

Muhammad Arif Butt (PUCIT) 31

Working with gdb(cont…)

• gdb can be used to find bugs in a program

• Breakpoints are the main key in finding bugs in a
program

Procedure -1:

• Use (gdb) next command to execute each statement of
the program

• Print the values of variables using the (gdb) print

command

• Observe values of variables and get to the error and
remove that error

Muhammad Arif Butt (PUCIT) 32

Finding Bugs in a Program

Procedure -2:

• Apply breakpoints at different points/lines in a program

• Run the program using (gdb) run statement, the
program will pause its execution at first breakpoint

• At that breakpoint, print the values of variables using
(gdb) print statement

• Use (gdb) continue statement to reach the next
breakpoint

• Again print the values of variables

• Observe the values, get to the error(s) and remove it
Muhammad Arif Butt (PUCIT) 33

Finding Bugs in a Program(cont…)

• gdb can be used to see the assembly of a program

• After the program has been loaded in gdb its assembly
can be seen using command
(gdb) disassemble [function name]

• To see assembly of each line separately use /m with
disassemble like

(gdb) disassemble /m [function name]

• If disassemble command is used during the execution of
program at some breakpoint then the line having arrow at
its beginning indicates that this line is under execution

Muhammad Arif Butt (PUCIT) 34

Assembly Code of Program

Muhammad Arif Butt (PUCIT) 35

Assembly Code of Program(cont…)

• The arrow sign at 6th line indicates that this line is
currently under execution

Snippet showing assembly using disassemble command

Muhammad Arif Butt (PUCIT) 36

Assembly Code of Program(cont…)

Snippet showing result of disassemble with /m

• gdb also lets us know the values of different registers
during the execution of the program

• Command used for this is
(gdb) info registers /*will display the values of
different registers*/

Registers Details:

• For 64-bit architecture, there are 16 64-bit general
purpose registers

• For 32-bit architecture, there are 8 32-bit general
purpose registers

Muhammad Arif Butt (PUCIT) 37

Registers

• Then there is IP (Instruction Pointer) register which
contains the address of the next instruction to be executed

• Below IP register, there is eflags register which contains
bits of different flags like carry flag, sign flag, parity flag,
zero flag

• Below that there are six segment registers namely cs, ss,
ds, es, fs, gs

• Command to see all registers
(gdb) info all-registers

• This will show initial registers along with eight 80-bit

registers from st0 to st7 and then there are sixteen 256-

bit registers from ymm0 to ymm15
Muhammad Arif Butt (PUCIT) 38

Registers(cont…)

Muhammad Arif Butt (PUCIT) 39

Registers(cont…)

Instruction Pointer(IP) Register

• IP points to the address of the next instruction to be executed

Function Calling

• When a function is called, the value of IP is pushed into a stack
and the address of first instruction of function is stored in IP

• When the function terminates, the previously stored value in
stack is popped out and assigned to IP register

rbp & rsp

• rbp points to the bottom of the current stack frame

• rsp points to the top of the stack, i.e. to the last occupied
address by stack

Muhammad Arif Butt (PUCIT) 40

Registers(cont…)

• When a program starts its execution, the main()

function is pushed into a stack

• Whenever a function is called by the main, the called
function is also pushed into the stack over the main()

function

• And if this called function calls some other function,
that called function is also pushed into that stack and so
on

• When a called function has finished its execution, it is
popped out from the stack

Muhammad Arif Butt (PUCIT) 41

Working of Stack

• rbp points to the address in the stack where last function
has been pushed, whenever a new function is pushed into the
stack rbp starts pointing to the start of that function

• And when a function is popped out from the stack, rbp
starts pointing to the start of the function below it

• rsp points to the address in the stack where last byte of
newly pushed function resides and whenever a new function
is pushed into the stack, rsp starts pointing to its last byte

• And when a function is popped out of the stack, rsp starts
pointing to the address of the last byte of the function
below that popped function

Muhammad Arif Butt (PUCIT) 42

Working of Stack(cont…)

Muhammad Arif Butt (PUCIT) 43

Working of Stack(cont…)
/*stackDemo.c*/

1. #include<stdio.h>

2. int f1();

3. int f2();

4. int main(){

5. f1();

8. printf(“DONE!\n");

9. return 0;

10.}

11.int f1(){

12. f2();

13. return 1;}

14.int f2(){

15. return 2;}

• At the start of the program

the stack only contains main()

function

• rbp and rsp are pointing to the start

and end of main() function in the

stack respectively

Muhammad Arif Butt (PUCIT) 44

Growing of Stack

Frame for
main()

Higher addresses

Lower addresses

rbp

rsp

Muhammad Arif Butt (PUCIT) 45

• At line# 5, when function f1() is

called, f1() is pushed into the stack

over main()

• rbp and rsp now start pointing to the

start and end of function f1() in the

stack respectively

45

Growing of Stack(cont…)

Frame for
main()

Higher addresses

Lower addresses

rbp

rsp

Frame for
f1()

Muhammad Arif Butt (PUCIT) 46

• At line# 12, when function f2() is

called, f2() is pushed into the stack

over f1()

• rbp and rsp now start pointing to the

start and end of function f2() in the

stack respectively

46

Growing of Stack(cont…)

Frame for
main()

Higher addresses

Lower addresses

rbp

rsp

Frame for
f1()

Frame for
f2()

Muhammad Arif Butt (PUCIT) 47

• At line# 15, when return statement

of f2()function is executed, it is

popped out from the stack and

control goes to line# 13 of f1()

• rbp and rsp now start pointing to the

start and end of function f1() in the

stack respectively

47

Growing of Stack(cont…)

Frame for
main()

Higher addresses

Lower addresses

rbp

rsp

Frame for
f1()

Muhammad Arif Butt (PUCIT) 48

• At line# 13, when return statement

of f1()function is executed, it is

popped out from the stack and

control goes to line# 8 of main()

• rbp and rsp now start pointing to the

start and end of function main() in

the stack respectively

48

Growing of Stack(cont…)

Frame for
main()

Higher addresses

Lower addresses

rbp

rsp

•And finally at the end, when return statement of
main() is executed at line# 9, it is also popped
out from the stack and stack becomes empty

Muhammad Arif Butt (PUCIT) 49

Growing of Stack(cont…)

backtrace

• backtrace is used to print backtrace of all stack
frames, i.e. to display all the contents of stack

•Syntax
(gdb) backtrace or (gdb) bt

•To use backtrace, we can apply breakpoints at
different points in the program and see the
contents of stack at those break points using
backtrace

Muhammad Arif Butt (PUCIT) 50

Stack commands

Muhammad Arif Butt (PUCIT) 51

Use of backtrace

finish

• finish command is used to return to the previous
frame

• finish executes the current function, returns
its value and stops over there

•Syntax
(gdb) finish

Muhammad Arif Butt (PUCIT) 52

Stack commands(cont…)

Muhammad Arif Butt (PUCIT) 53

Use of finish

Muhammad Arif Butt (PUCIT) 54

