C-Refresher: Session 02
GNU Debugger

Arif Butt
Summer 2017

| am Thankful to my student Muhammad Zubair bcsf14m029@pucit.edu.pk for preparation of
these slides in accordance with my video lectures at

http://www.arifbutt.me/category/c-behind-the-curtain/

mailto:bcsf14m029@pucit.edu.pk
http://www.arifbutt.me/category/c-behind-the-curtain/

Today’s Agenda

 Debugging
 gdb Debugger
» Working with gdb

» Finding Bugs in a Program

» Assembly Code of Program using gdb Debugger
» Working of Stack

Debuqging

Debugging is a science or art of eliminating the
bugs in a computer
program.

There are a lot of
debugging tools having
both the command line
and GUI interfaces

Debugging a cyclic process

Muhammad Arif Butt (PUCIT) 3

Debuqqginqg(cont...
Debugger:

Debugger is a computer program running another
computer program in it. A debugger assists in the
detection and correction of errors in a computer
program.

dTypes of Debuggers:

gdb - the GNU debugger, Firefox JavaScript
debugger, Microsoft visual studio debugger and many
more.

qdb - the GNU debugger

* gdb allows you to see what is going on inside another
program while it executes, or what another program
was doing at the moment it crashed

* gdb can be used to debug programs written in C, C++,
FORTRAN and Modula-2

» gdb allows you to run the program up to a certain
point, then stop and print out the values of certain
variables at that point, or step through the program
one line at a time and print out the values of each
variable after executing each line

qdb - the GNU debugger(cont...)

UFour main things gdb can do

1.

2.
3.

Start your program, specifying anything that
might affect its behaviour

Make your program stop on specified conditions

Examine what has happened, when your program
has stopped

Change things in your program, so you can
experiment with correcting the effects of one
bug and go on to learn about another

Working with gdb

* For using gdb it must be installed first, if it is not

installed, install it using command
S sudo apt-get install libc6-dbg gdb valgrind

» Command to start gdp [t s

GNU gdb (Ubuntu 7.11.1-Oubuntul~16.64) 7.11.1
55 Q}Cil) Copyright (C) 2016 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
'I' cj }‘ There is NO WARRANTY, to the extent permitted by law. Type "show copying
o l " and "show warranty" for details.
O avol T IS This GDB was configured as "x86_64-linux-gnu".

‘e . Type "show configuration” for configuration details.

addl.“onal |nf0 use —q For bug reporting instructions, please see:
<http://www.gnu.org/software/qdb/bugs/>.

Op'l'ion Wl'fh gdb Ilke Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/qdb/documentation/>.

S gdb —-g For help, type "help".
Type "ipropos word" to search for commands related to "word".
(gdb)

Muhammad Arif Butt (PUCIT) 7

Working with gdb(cont...)

*gdb iS an interactive program, it waits for the
commands from the user to execute

* To execute a shell command in gdo it must be
proceeded with the bang sign(!)

°e.q.
(gdb) !clear

* clear is a shell command for clearing the screen, so
it has been proceeded with the bang sign

Important gdb commands

file [executable file name] Jo load a program executable file in gdb

help Displays the classes of commands

help [class name] List of commands in a specified class

list Show the contents of the program loaded in gdb
info inferiors Displays program(s) loaded in gdb
add-inferior -exec To load more than one program in gdb

[executable file name]

inferior [program To switch to a specific program
number]
run [cmd line args] To run/execute the program with cmd line args

if needed

Important gdb commands

watch [variable name]

break [line number]
info break

continue or c

next or n
backtrace or bt

finish

Interrupts the execution of the program when
the value of the variable changes

Apply break point at a specific line
Displays the classes of commands

To continue the program execution ftill the
program end or the next breakpoint

To execute the next instruction
Displays the contents of the program stack

To execute till the end of current function and
return to the previous frame in stack

Working with gdb(cont...)

/*progl.c.we will be using this example program for
understanding gdb commands*/

#include<stdio.h>
int main () {
int n;
printf ("Enter a number: ");

scanf ("%d", &n) ;
for (int 1=0 ,; 1<n ; 1++){
printf ("Learning Linux is fun!\n");

J

return O0O;

= O O J o O H» W DN =

Working with gdb(cont...)

* For a program to be loaded in gdb it must be compiled
using -g or -ggdb option
*eg.

Sgcc —-g progl.c -o progl OF Sgcc -ggdb progl.c -0
progl

Now the program can be loaded in gdb in three ways:
1. While starting gdb give the program executable

filename as argument, like
Sgdb progl

2. Using file command of gdb after gdb has been started
(gdb) file progl

Working with gdb(cont...)

3. Using attach command and giving pID of some running
process as argument

* Syntax
(gdb) attach [PID]

* Let's suppose we run a program top
$ top //displays Linux processes

« We can get the p1D of running processes using command
S ps —au

* Now the process can be loaded in gdb using command
(gdb) attach [PID]

Working with gdb(cont...)

linux@ubuntu: ps -au
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 4201 0.0 0.0 23008 296 ttyl Ss+ Marl7 0:00 /sbin/agetty -
root 4220 0.6 2.9 451160 29392 tty7 Ss+ Mar17 12:59 Jusr/lib/xorg/
zubair 5915 0.0 0.3 29728 3396 pts/22 Ss Marl7 0:01 bash
zubair 6110 0.0 0.2 29544 2148 pts/17 Ss Marl7 0:00 bash
zubalr 13684 0.0 0.2 29504 2404 Ss+ Marl7 0:00 bash

0.2 0.3 - 0:
'zubair 26208 0.0 0.3 44432 3196 pts/22 R+ 10:22 0:00 ps -au
linux@ubuntu: |

« As we can see here that top command is running and its
PIDIS 26198

« So toload it in gdb we have to use the command
(gdb) attach 26198

Muhammad Arif Butt (PUCIT)

Working with gdb(cont...)

dinferior

* gdb lets you load more than one programs in a single
session and switch focus between them

* gdb does this with the object inferior like inferior
1, inferior 2, inferior 3 ..

« Command for loading a process after the first process has
been loaded is

(gdb) add-inferior -exec prog?2 /*where
prog2 is the name of executable file for prog2.c*/

Working with gdb(cont...)

« Command used to show loaded programs is

(gdb) 1info i1nferiors

« Command to switch focus from one program to another is

(gdb) inferior [inferior number]

Working with gdb(cont...)

linux@ubuntu: gdb -q progl
Reading symbols from progl...done.
(gdb) info inferiors
Num Description Executable
* 1 <null> /home /zubair /Documents/slides/gdb/progi
(gdb) add-inferior -exec prog2
Added inferior 2
Reading symbols from prog2...done.
(gdb) info inferiors

Num Description Executable
*-1 <null> /home/zubair /Documents/slides/gdb/progil
2 <null> /home/zubair /Documents/slides/gdb/prog2

(gdb) inferior 2

[Switching to inferior 2 [<null>] (/home/zubair/Documents/slides/gdb/prog2)]
(gdb) info inferiors

Num Description Executable

1 <null> /home /zubair /Documents/slides/gdb/progi
* 2 l<nu11> /home /zubair /Documents/slides/gdb/prog2
(gdb)

An example showing working of inferior command

Muhammad Arif Butt (PUCIT) 17

Working with gdb(cont...)

drun

» After a program has been loaded in gdb, it can be
executed using run command

* Syntax

(gdb) run [cmd line arguments]

* Note: If there are more than one programs loaded in
gdb then only one program can be executed at a time

and the program having focus on it will be executed
by run command

Working with gdb(cont...)

Qlist

* 1ist command is used to display the contents of the
program loaded in gdb and currently having focus on it

*eg.

linux@ubuntu: gdb -q progil

Reading symbols from progl...done.

(gdb)

1 #include<stdio.h>

2

3 int main(){

- int n;

5 printf("Enter a number: ");
6 scanf("%d" ,&n);

7 for(int 1=0 ; i<n ; i1++){
8 printf("Learning Linux is fun!\n");
S 3

10

(gdb)

Working with gdb(cont...)

dhelp

* help command in gdb is used to display the list of

classes of commands
(gdb)

List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points
data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands

Working with gdb(cont...)

» Syntax to display the list of commands in a class is
(gdb) help [class name]

*e.g.(gdb) help data//display all commands in data class

» Syntax to display the list of all commands
help all

» Syntax to display the documentation of a specific
command is
(gdb) help [command name]
e.g. (gdb) help list / will display a full
documentation of 1ist command */

Working with gdb(cont...)

dprint
- print command is used to print the value of an expression
or variable passed as argument to it

- print command is generally used to print the values of
variables while debugging the program

* Syntax

(gdb) print [expression/variable name]
* e.g. standing at line 7 in progl.c to check the value of n
and i we will type
(gdb) print n //result will be the value entered
(gdb) print i //result will be O for the first time

Working with gdb(cont...)

* To print the value in hex format use /x option with the
print command like

(gdb) print /x n /*will print the value of n in hex
format™/
* To print the value in octal format use /o option with the
print command like
(gdb) print /o n /*will print the value of n in
octal format™/
* To print the value in binary format use /t option with the
print command like

(gdb) print /t n /*will print the value of n in
binary format™/

Working with gdb(cont...)

* To print the value of some register in hex use /x option
with print command and also use $ sign with the name of
the register

*e.g. rip is a register that holds the address of the next
instruction to be executed, to display its value we can
write

(gdb) print /x Srip

Working with gdb(cont...)

dwhatis

» whatis is @ gdb command used to display the datatype of
some variable

*eg.
(gdb) whatis n //will display the following result
type = 1nt

set

- set iS a gdb command used to temporarily set the value of
some variable for debugging purposes

*e.g. (gdb) set variable i=5 or (gdb) set [i=5] /*will
set the value of i=5 at that point™/

Working with gdb(cont...)

dWatchpoint:

* A watchpoint pauses execution of a program whenever
the value of a certain expression/variable changes

» watch command is used to apply watchpoints
* Syntax

(gdb) watch [expression]
*e.g. In program progl.c

(gdb) watch i /*will apply watchpoint on variable i
and will interrupt whenever the value of i changes™/

Working with gdb(cont...)

Breakpoint:

* Breakpoint can be applied at any line or function by giving
the line number or the function name as argument

* When we apply a breakpoint, it pauses the execution of
the program when the program reaches that point

*break command of gdb can be used for applying
breakpoints in a program

* Syntax

(gdb) break [line number/function name] Or
(gdb) break progl.c:[line number/function name]

* The second one should be used if there are more than one
programs loaded in gdo

Working with gdb(cont...)

* Breakpoints may be more than one in a program

* To display the list of all breakpoints in a program use
command

(gdb) 1nfo break

* To disable a breakpoint use command
(gdb) disable [break number]

« And to enable a breakpoint
(gdb) enable [break number]

* To delete a breakpoint
(gdb) delete [break number]

Working with gdb(cont...)

(gdb) info break
No breakpoints or watchpoints.

(gdb)

Breakpoint 1 at 0x40066c:

(gdb)

Breakpoint 2 at 0x40064e:

break 6

break main

(gdb) info break
Num Type

1 breakpoint
2 breakpoint
(gdb) disable 1
(gdb) info break
Num Type

1 breakpoint
2 breakpoint
(gdb) delete 2
(gdb) info break
Num Type

1 breakpoint
(gdb) enable 1
(gdb) info break
Num Type

1 breakpoint
(gdb) N

Disp
keep
keep

Disp
keep
keep

Disp
keep

Disp
keep

file progl.c,

file progl.c,

Enb Address

y Ox000000000040066C
y Ox000000000040064e

Enb Address

n Ox000000000040066C
y Ox000000000040064e

Enb Address

n Ox000000000040066C

Enb Address

y Ox000000000040066C

Muhammad Arif Butt (PUCIT)

1line 6.

1line 3.

What
in main
in main

What
in main
in main

What
in main

What
in main

at
at

at
at

at

at

progl.c:6
progl.c:3

progl.c:6
progl.c:3

progl.c:6

progl.c:6

29

Working with gdb(cont...)

Jcontinue

e continue is a gdb command that is used to continue the
execution of program till the end or till some breakpoint

* Syntax
(gdb) continue or (gdb) c
dnext

* next iS also a gdb command used to execute the very next
program instruction/line

* Syntax
(gdb) next or (gdb) n

Working with gdb(cont...)

dNote:
*In gdb, simply pressing ENTER will execute the
command that was last executed
*e.g.
« we execute the command
(gdb) next
» After executing this command, no need to type next

again to execute the next command, rather simply
press ENTER and the next command will be executed

again

Finding Bugs in a Program

- gdb can be used to find bugs in a program

* Breakpoints are the main key in finding bugs in a
program

JProcedure -1:

e Use (gdb) next command to execute each statement of
the program

* Print the values of variables using the (gdb) print
command

* Observe values of variables and get fto the error and
remove that error

Finding Bugs in a Program(cont...)

JProcedure -2:

» Apply breakpoints at different points/lines in a program

*Run the program using (gdb) run statement, the
program will pause its execution at first breakpoint

* At that breakpoint, print the values of variables using
(gdb) print statement

Use (gdb) continue Sstatement to reach the next
breakpoint

* Again print the values of variables
» Observe the values, get to the error(s) and remove it

Assembly Code of Program

* gdb can be used to see the assembly of a program

* After the program has been loaded in gdb its assembly
can be seen using command

(gdb) disassemble [function name]

* To see assembly of each line separately use /m with
disassemble like

(gdb) disassemble /m [function name]

* If disassemble command is used during the execution of
program at some breakpoint then the line having arrow at
its beginning indicates that this line is under execution

Assembl

(gdb) disassemble main

Code of Program(cont...

Dump of assembler code for function main:

Ox0000000000400646
Ox0000000000400647
Ox0000000000400644a
O0x000000000040064e
Ox0000000000400657
0x000000000040065b
0x000000000040065d
Ox0000000000400662
Ox0000000000400667
Ox000000000040066C
Ox0000000000400670
Ox0000000000400673

Snippet showing assembly using disassemble command

<+0>:
<+1>:
<+4>:
<+8>:

<+17>:
<+21>:
<+23>:
<+28>:
<+33>:
<+38>:
<+42>:
<+45>:

push %rbp
mov %rsp,%rbp
sub $0x10,%rsp

mov %Fs:0x28,%rax

mov %rax,-0x8(%rbp)

Xor %eax,%eax

mov S0x400744 ,%ed1

movV SOx0,%eax

callg 0x400510 <printf@plt>
lea -0x10(%rbp) ,%rax

mov %rax,%rsi

mov SOx400755,%ed1

« The arrow sign at 6th line indicates that this line is
currently under execution

Muhammad Arif Butt (PUCIT)

35

Assembly Code of Program(cont...

3

(gdb) disassemble /m main
Dump of assembler code for function main:

int main(){

OX0000000000400646 <+0>: push %rbp
Ox0000000000400647 <+1>: mov %rsp,%rbp
OX000000000040064a <+4>: sub SOx10,%rsp
Ox000000000040064e <+8>: mov %fs:0x28,%rax
OX0000000000400657 <+17>: mov %rax,-0x8(%rbp)
Ox000000OAOO40065b <+21>: Xor %eax ,%eax

int n;

printf("Enter a number: ");
Ox000000000040065d <+23>: mov SOx400744 ,%edi
OX0000000000400662 <+28>: mov SOXx0 ,%eax
Ox0000000000400667 <+33>: callg ©0x400510 <printf@plt>

scanf("%d" ,&n);
Ox00000OOOOO40066C <+38>: lea -0x10(%rbp) ,%rax
OX0000000000400670 <+42>: mov %rax,%rsi
OXx0000000000400673 <+45>: mov SOx400755,%edl
0x0006000000400678 <+50>: mov $0xe %eax

Snippet showing result of disassemble WlTh /m

Muhammad Arif Butt (PUCIT) 36

Registers

» gdb also lets us know the values of different registers
during the execution of the program

 Command used for this is

(gdb) info registers /*will display the values of
different registers™/

Registers Details:

* For 64-pbit architecture, there are 16 64-bit general
purpose registers

* For 32-bit architecture, there are 8 32-bit general
purpose registers

Registers(cont...)

* Then there is IP (Instruction Pointer) register which
contains the address of the next instruction to be executed

* Below IP register, there is eflags register which contains
bits of different flags like carry flag, sign flag, parity flag,
zero flag

 Below that there are six segment registers namely cs, ss,
ds, es, fs, gs
« Command to see all registers
(gdb) 1nfo all-registers

* This will show initial registers along with eight 8o0-pit
registers from stO to st7 and then there are sixteen 256-
bit registers from ymmO to ymm15

Registers(cont...

(gdb)

rax
rbx
rcx
rdx
rsi
rdi
rbp
rsp
r8
ro
rio
rii
riz
ri3
rig
ris
rip
eflags
cs
SsS
ds
es
fs

gs
(gdb) B

0x400646 4195910

Ox0 Q)

Ox0 0}

Ox7fffffffdf4s 140737488346952
Ox7fffffffdf38 140737488346936
Ox1 1

Ox7fffffffdeso Ox7fffffffdeso
Ox7fffffffde4o Oox7fffffffdedo
Ox400730 4196144

Ox7ffff7de78e0 140737351940320
Ox846 2118

Ox7ffff7a2e740 140737348036416
0x400550 4195664

OX7fffffffdf3e 140737488346928
Ox0 Q)

Ox0 0

Ox40064e 0x40064e <main+8>
0x202 [IF]

0x33 51

0x2b 43

Ox0 0

Ox0 0]

Ox0 0

Ox0 0

Muhammad Arif Butt (PUCIT)

39

Registers(cont...)
UInstruction Pointer(IP) Register

* IP points to the address of the next instruction to be executed
LdFunction Calling

* When a function is called, the value of IP is pushed into a stack
and the address of first instruction of function is stored in IP

* When the function terminates, the previously stored value in
stack is popped out and assigned to IP register

Qdrbp & rsp
* rbp points to the bottom of the current stack frame

* rsp points to the top of the stack, i.e. fo the last occupied
address by stack

Working of Stack

* When a program starts its execution, the main ()
function is pushed into a stack

* Whenever a function is called by the main, the called
function is also pushed into the stack over the main ()

function
 And if this called function calls some other function,

that called function is also pushed into that stack and so
on

* When a called function has finished its execution, it is
popped out from the stack

Working of Stack(cont...)

* rbp points to the address in the stack where last function
has been pushed, whenever a new function is pushed into the
stack rbp starts pointing to the start of that function

* And when a function is popped out from the stack, rbp
starts pointing to the start of the function below it

* rsp points to the address in the stack where last byte of
newly pushed function resides and whenever a new function
is pushed into the stack, rsp starts pointing to its last byte

* And when a function is popped out of the stack, rsp starts
pointing to the address of the last byte of the function
below that popped function

Working of Stack(cont...)

/*stackDemo.c*/
1. #include<stdio.h>

2. 1nt £1();

3. 1nt f£2();

4. 1nt main () {

J. £1() 7

8. printf (“"DONE!\n") ;
9. return O;

10.}

11.int £1 () {

12. £2();

13. return 1;}
14.1nt £2 () {
15. return 2;}

Growing of Stack

Higher addresses

* At the start of the program

the stack only contains main ()
function

» rbp and rsp are pointing to the start
and end of main () function in the
stack respectively

Lower addresses

Frame for
main ()

rbp

rsp

Growing of Stack(cont...)

Higher addresses

* At line# B, when function £1 () is
called, £1 () is pushed into the stack
over main ()

* rbp and rsp how start pointing to the
start and end of function £1 () in the
stack respectively

Lower addresses

Frame for
main ()

Frame for
£1()

rbp

rsp

Growing of Stack(cont...)

Higher addresses

* At line# 12, when function £2 () is
called, £2 () is pushed into the stack
over £1 ()

* rbp and rsp how start pointing to the
start and end of function £2 () in the
stack respectively

Lower addresses

Frame for
main ()

Frame for
£1()

Frame for
£2 ()

rbp

rsp

Growing of Stack(cont...)

Higher addresses

* At line# 15, when return statement
of £2 () function is executed, it is
popped out from the stack and

control goes to line# 13 of £1 ()

» rbp and rsp how start pointing to the
start and end of function £1 () in the

stack respectively
Lower addresses

Frame for
main ()

Frame for
£1()

rbp

rsp

Growing of Stack(cont...)

Higher addresses

* At line# 13, when return statement
of £1 () function is executed, it is
popped out from the stack and

control goes to line# 8 of main ()

* rbp and rsp how start pointing to the
start and end of function main () in

the stack respectively
Lower addresses

Frame for
main ()

rbp

rsp

Growing of Stack(cont...)

* And finally at the end, when return statement of
main () is executed at line# 9, it is also popped

out from the stack and stack becomes empty

Stack commands

backtrace

*backtrace is used to print backtrace of all stack
frames, i.e. to display all the contents of stack

* Syntax
(gdb) backtrace or (gdb) bt

* To use backtrace, we can apply breakpoints at
different points in the program and see the

contents of stack at those break points using
backtrace

Use of backtrace

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep vy Ox0000POOANOA40052a in main at stackDemo.c:5
2 breakpoint keep vy OxX00000NOONO400549 in f1 at stackDemo.c:10
3 breakpoint keep y Ox0000000OOA40055e in f2 at stackDemo.c:13
(gdb) run

Starting program: /home/zubair/Documents/slides/gdb/stk

Breakpoint 1, main () at stackDemo.c:5

5 f1();

(gdb) bt

#0® main () at stackDemo.c:5
(gdb) c

Continuing.

Breakpoint 2, f1 () at stackDemo.c:10

10 f2();

(gdb) bt

#0 f1 () at stackDemo.c:10

#1 Ox0000000000400534 in main () at stackDemo.c:5
(gdb) c

Continuing.

Breakpoint 3, f2 () at stackDemo.c:13

13 return 2}

(gdb) bt

#0 f2 () at stackDemo.c:13

#1 Ox0000000000400553 in f1 () at stackDemo.c:10
#2 0Ox0000000000400534 in main () at stackDemo.c:5

(gdb) N

Muhammad Arif Butt (PUCIT)

Stack commands(cont...)

dfinish

» finish command is used to return to the previous
frame

« finish executes the current function, returns
its value and stops over there
* Syntax
(gdb) finish

Use of finish

(gdb) bt

#0 f2 () at stackDemo.c:13

#1 0Ox0000000000400553 in f1 () at stackDemo.c:10
#2 0Ox0000000000400534 in main () at stackDemo.c:5
(gdb) finish

Run till exit from #0 f2 () at stackDemo.c:13

f1 () at stackDemo.c:11

11 return 1;}
Value returned is $1 = 2
(gdb) bt

#0 f1 () at stackDemo.c:11

#1 0Ox0000000000400534 in main () at stackDemo.c:5
(gdb) finish

Run till exit from #0 f1 () at stackDemo.c:11
main () at stackDemo.c:6

6 printf("DONE!\n");

Value returned is $2 = 1

(gdb) bt

#0 main () at stackDemo.c:6

(gdb) c

Continuing.

DONE!

[Inferior 1 (process 47073) exited normally]

(gdb) N

Muhammad Arif Butt (PUCIT)

