C-Refresher: Session 04
Terminal IO

Arif Butt
Summer 2017

| am Thankful to my student Muhammad Zubair bcsf14m029@pucit.edu.pk for preparation of
these slides in accordance with my video lectures at

http://www.arifbutt.me/category/c-behind-the-curtain/

mailto:bcsf14m029@pucit.edu.pk
http://www.arifbutt.me/category/c-behind-the-curtain/

Today’s Agenda

* Input Output in C
» Formatted Output using printf()

» Formatted Input using scanf()
» Unformatted I/0

Input Output(I/O) in C

*I/0 in C can be done using two ways
*High level Library calls
*Low level routines(System calls)

*In library calls, buffer is managed implicitly,
i.e. the programmer doesn't need to manage it

*In system calls, managing buffer is the
programmer's responsibility

Input Output(I/0) in C(cont...)

Three categories of I/0
« Terminal I/0 (will be discussed for now)
« Disk I/0
*Port I/0

dTerminal I/0

* Terminal is a visual display unit that acts as an
output device for the process

*In terminal I/O, the input is taken from the
keyboard and the output is displayed on the terminal

« Works in canonical and non-canonical mode

Input Output(I/0O) in C(cont...)

* In canonical mode, input done by the user goes to
the process, only when the user presses ENTER key.

Bash shell and all C-programs normally work in
canohical mode

* In non-canonical mode, when user presses a key it

is sent to the process without the need of pressing
the ENTER key, e.g. vim editor, more command also
works in non-canonical mode

Input Output(I/0O) in C(cont...)

» Devices involved in terminal I/0

1. Terminal is used for displaying the output of the
process

2. Process takes its input from a keyboard

* Two types of terminal I/0
1. Formatted I/0
2. Unformatted I/0

Input Output(I/O) in C(cont..)

dFormatted I/0

*You can specify whether to read char, string,
integer or float datatype

 Functions used in formatted I/0
eprintf () //for output
» scanf () //for input

Input Output(I/O) in C(cont..)

dUnformatted I/0

* Input and output are treated as characters, i.e. at
first, input is taken as characters, it may then be
converted to required type using other functions

e Functions used in unformatted I/0

* getchar () //for input
* gets () //for input
e putchar () //for output

e puts () //for output

Formatted output using printf
dPrototype of printf()

int printf (“format string”, argl,argZ,..,argn)
* Format string is compulsory

* Format string can be

* Characters which are to be printed as it is on the
screen

» Escape sequence characters (/n, /t, /b, ..)
* Format specifiers for output

* Format of format specifier

% [some additional argument] [format character]

Formatted output using printf()(cont...

sd int

s1d long int

%11d long long int

st float

S1f double

ze for exponential form
3C char

%S string

50 octal

X hex

P printing address of pointer

Muhammad Arif Butt (PUCIT) 10

Formatted output using printf()(cont...

- argl,arg2,..,argn represent arguments which can be
in variable numbers

* Number of arguments must be equal to the number
of format specifiers specified in the format string

* e.g. for three format specifiers specified in the format
string there must be three arguments

* Arguments must be compatible with the format
specifier specified in the format string
*e.g. printf(“%d %c %1f”,char,int,double) /*will be
incorrect™/
e printf (“2d %c %1f”,int,char,double) //will be correct

Formatted output using printf()(cont...

//program using format specifier with string
#include<stdio.h>

int main () {
printf ("Hello World!\n");
char name[40]="Muhammad Arif Butt";
printf ("%$s\n", name) ;
printf ("%$30s\n", name) ; . //30=>field width=30
printf ("$-30s\n", name) ; //—=>left allgn the string

printf ("%$.8s\n",name); //.8=>print 8 characters from string
printf ("%$30.8s\n", name) ;

/*30.8=>field width=30 and print 8 characters™/
printf ("$-30.8s\n", name); //-=>left allgn the string

return 0;}

Formatted output using printf()(cont...

* Output of the above program is:

Hello World!
Muhammad Arif Butt

Muhammad Arif Butt
Muhammad Arif Butt
Muhammad

Muhammad

Muhammad

Formatted output using printf()(cont...

//program using format specifier with char
#include<stdio.h>

int main () {
char ch="'A";
printf ("As Character wvalue: %c\n",ch);
printf ("As Integer (base 10) value: %d\n",ch);
printf ("As Octal wvalue: %o\n",ch);
(

printf ("As Hex value: %x\n",ch);

printf ("Address of ch: %p\n", &ch) ; /*may chcmge from
one time to the other*/

return 0;

Formatted output using printf()(cont...

* Output of the above program is:
As Character wvalue: A
As Integer (base 10) value: 65
As Octal value: 101
As Hex wvalue: 41

Address of ch: O0x7ffddof549b7/

Formatted output using printf()(cont...

//program using format specifier with int
#include<stdio.h>

int main () {
int n=123456;
printf ("%d\n",n) ;
printf ("%10d\n",n); //field width of 10

(
printf ("$010d\n",n); //padded with zeroes
printf ("%$-10d\n",n); //left aligned
printf ("$-010d\n",n) ;

return 0;

Formatted output using printf()(cont...

* Output of the above program is:
123456
123456
0000123456
123456
123456

Formatted output using printf()(cont...

//program using format specifier with double
#include<stdio.h>
int main () {

double d=987.123456;

printf ("$1£f\n",d);

(
printf ("$151f\n",d); //field width=15
printf ("%$.31£\n",d); //print only 3 decimal places
printf ("%$15.31f\n",d); //field width=15 and decimal
places=3*/

printf ("%$-15.31f\n\n\n",d); //right aligned

Formatted output using printf()(cont...

return 0;}

Formatted output using printf()(cont...

* Output of the above program is:

987.123456
987.123456
987.123
987.123
987.123

9.871235e+02
9.871235e+02
9.871e+02
9.871e+02
9.871e+02

Formatted Input using scanf()

dPrototype of scanf()

int scanf (“format string”,argl,arg’?,..,argn)

» Format string contains only format specifiers separated
by spaces, as mentioned earlier for printf ()

* No. of arguments must be same as that of the format
specifiers and they should also be compatible with each
other, as mentioned earlier

- scanf () returns the number of input items successfully
matched and assigned

* Note: Arguments of scanf () are always pointers

Formatted Input using scanf()(cont...)

//Program showing use of scanf ()
#include<stdio.h>
int main () {
char name[50];
printf ("Enter your name: ");
scanf ("%s", name) ;
int age;
printf ("Enter your age: ");
scanf ("%d", &age) ;
double cgpa;
printf ("Enter your CGPA: ");
scanf ("%1f", &cgpa) ;
printf ("Mr. %s, you are %d years old and your CGPA 1s %4.21f.
Good Luck!\n",name, age, cgpa) ;

return 0;}

Formatted Input using scanf()(cont...)

* An Output of the above program is:
Enter your name: Arif
Enter your age: 41
Enter your CGPA: 3.87

Mr. Arif, vyou are 41 years old and your CGPA 1s
3.87. Good Luck!

* Another outpuft is:

Enter your name: Arif Butt

Enter your age: Enter your CGPA: Mr. Arif, you are
0 years old and your CGPA 1s 0.00. Good Luck!

* Here the program is displaying some garbage values
for age and CGPA

Formatted Input using scanf()(cont...)

//another program showing use of scanf ()
#include<stdio.h>
int main () {

char name[50];

int age;

double cgpa;

printf ("Enter name, age and CGPA: ");

scanf ("%s %d %$1f",name, &age, &cgpa); /*format specifiers
to be space separated™/

printf ("Mr. %s, you are 3%d years old and your CGPA
is %$4.21f. Good Luck!\n",name, age, cgpa) ;

return 0;

Formatted Input using scanf()(cont...)

* An Output of the above program is:
Enter name, age and CGPA: Arif 42 3.88

Mr. Arif, vyou are 42 years old and your CGPA 1s
3.88. Good Luck!

* Another output is:
Enter name, age and CGPA: 42 3.87 Arif

Mr. 42, vyou are 3 years old and your CGPA 1s 0.87.
Good Luck!

* Another one is:

Mr. Arif, you are 35261 years old and your CGPA 1is
490385.00. Good Luck!

Formatted Input using scanf()(cont...)

* Reason for these outputs

- scanf () when reading data into a string, it, by
default, reads until a space or newline character (/n)
appears in the input buffer

* When a string is entered with a space, scanf ()
reads till that space character, leaving the remaining
characters in the buffer

* Then if an integer/floating point number is expected
at next place from the buffer, then it creates a
garbage value in the integer/floating point variable

Formatted Input using scanf()(cont...)

/*Program showing how to take a string with spaces using
scanf () */

#include<stdio.h>

int main () {
char name[50];
printf ("Enter you name: ");

scanf ("$[*\n]s",name); /* \n character after ~ indicates that
the scanf () should read the input till \n. Some other character can
also be given in place of \n */

printf ("You are done Mr. %s\n",name) ;

return 0;

Formatted Input using scanf()(cont...)

* An Output of the above program is:
Enter you name: Muhammad Arif Butt

You are done Mr. Muhammad Arif BRutt

* Another output is:

Enter you name: Arif

You are done Mr. Arif

Here, scanf() reads till a \n character is
found in the input buffer

Formatted Input using scanf()(cont...)

//Program for showing an aspect of input buffer
#include<stdio.h>

int main () {

int os, sp;

printf ("Enter marks in OS and SP: ");
scanf ("sd sd", &os, &sp) ;

int dld;

printf ("Enter marks in DLD: ");

scanft ("sd", &d1d) ;

printf ("Your marks 1s OS %d,in SP %d and 1in DLD are
$d\n", os, sp,dld) ;

return 0;

Formatted Input using scanf()(cont...)

* An Output of the above program is:
Enter marks in OS and SP: 81 87
Enter marks in DLD: 90
Your marks 1s OS 81,1n SP 87 and in DLD are 90

* Another output is:
Enter marks in OS and SP: 81 87 90

Enter marks 1in DLD: Your marks 1s 0OS 81,1in SP 87
and in DLD are 90 °

Formatted Input using scanf()(cont...)

* All above outputs can be generalized by the
following fact

- scanf () after reading its required input leaves the
remaining input(if any) entered by the user in the
input buffer

*If there is some other variable, waiting next, to
read the input then the user will not be prompted
for new input rather the already contained input in
the buffer will be read by that variable

Formatted Input using scanf()(cont...)

//Program for showing use of buffer by integer
#include<stdio.h>

int main () {
int age;
printf ("Enter your age: ");
scanf ("sd", &age) ;
char name[50];
printf ("Enter name: ");
scanf ("s[*\n]s",name) ;
printf ("Mr. %$s! your age is %d\n",name, age) ;

return 0;

Formatted Input using scanf()(cont...)

* An Output of the above program is:
Enter your age: 42

Enter name: Mr. ! your age 1s 42

* Integer type variables while reading data from
the buffer leave the \n character in the buffer
and here name variable reads that \n character

from the buffer and the program does not halt
for asking the name from the user

* The solution to this problem is given in the next
program

Formatted Input using scanf()(cont...)

//Program for showing buffer in integer
#include<stdio.h>
int main () {
int age;
printf ("Enter your age: ");
scanf ("%d", &age) ;
char ch;
scanf ("$c", &ch) ; //will read \n character in buffer
char name[50];
printf ("Enter name: ");
scanf ("$["\n]s",name) ;
printf ("Mr. %s! your age is %d\n",name, age);

return 0;}

Unformatted I/0

* There are four functions of unformatted I/0

* The two generally used functions are getchar () and
putchar ()

* gets () and puts() are not generally used as they
cause buffer overflow problems

*In order to use gets() safely, you have to know
exactly how many characters you will be reading, so
that you can make your buffer large enough. And you
will know that, only if you know exactly what data you
are going to read

Unformatted I/0O(cont...)

*So its unsafe to use gets() and puts ()
functions
int getchar ()

*getchar () reads character from stdin one by
one and returns it as an unsigned character
cast to an int

int putchar (int c)

putchar () writes ¢ as ah unsigned character
oh stdout and returns the character written as an
unsigned character cast toan int

Unformatted I/0O(cont...)

//simple program showing unformatted I/0

#include<stdio.h>
int main () {
int ch;
ch=getchar () ;
putchar (ch) ;

return 0;}

* The output of the program will be like

» TIf we press ENTER after typing a single character,
e.g. z, it is printed

» If we press ENTER after typing a word or collection of

words, e.g. Arif Butt, then only first character is printed
l.e. A

Unformatted I/0O(cont...)

#include<stdio.h>
int main () {
int chl,ch?2;
chl=getchar () ;
chZ2=getchar () ;
putchar (chl);
putchar (ch2) ;

return 0;}

» In this program, if we press ENTER after typing more than
one characters then the first character goes to chl and
second to ch?

« But if we press ENTER after typing a single character, then
that character goes to chl and \n character present in the
buffer is read into ch2

Unformatted I/0O(cont...)

#include<stdio.h>
int main () {
int chl,ch?2;
chl=getchar () ;

getchar () ; //for reading \n character present in the buffer
chZ2=getchar () ;

putchar (chl) ;

putchar (ch2) ;

return 0;}

« Contrary to the above program, for a single input character,

this program will prompt for the second character as well,
as \n character present in the buffer will be absorbed by
getchar () command written before taking input into ch?

Unformatted I/0O(cont...)

/*Program reads a complete line from stdin and then displays it,
i.e. it reads until it encounters a \n character at which it stops
and displays the characters™*/

#include<stdio.h>
int main () {
int ch;
while ((ch=getchar())!="\n")
putchar (ch) ;

return 0O;

Unformatted I/0O(cont...)

/*Program reads until it encounters an EoF character(i.e. ctr1+D)
, it actually reads until the user presses ENTER key, after that it

displays the characters typed and then waits again for the next
character(s) */

#include<stdio.h>
int main () {
int ch;
while ((ch=getchar ()) '=EOF)
putchar (ch) ;

return 0;

Unformatted I/0O(cont...)

/*Program shows a way of reading a string in some variable by
storing it in an array for later use*/

#include<stdio.h>

int main () {

char buffer[100];

int 1=0;

while ((buffer[i++]=getchar())!="\n");

buffer[--i]1="\0’; /*for replacing \n stored at this
position*/

printf ("%s",buffer);

return 0O;

Unformatted I/0O(cont...)

/*Program reads a string containing integers and then converts it
into an integer value using atoi () function*/

#include<stdio.h>

#include<stdlib.h>

int main () {
char buffer[100];
int 1=0;
while ((buffer[i++]=getchar())!="\n");
buffer[--i]1="\0";
int n=atoi (buffer); //strtol() can also be used
printf ("$d\n", ++n) ;

return 0O;

Important Note

* All the programs written in the slides are
exemplary programs for explaining the use of
commands

* These were just the examples of how to use the
commands, the commands may be used in various
ways in different programs

