
C-Refresher: Session 07
Pointers and Functions

Arif Butt
Summer 2017

I am Thankful to my student Muhammad Zubair bcsf14m029@pucit.edu.pk for preparation of
these slides in accordance with my video lectures at

http://www.arifbutt.me/category/c-behind-the-curtain/

mailto:bcsf14m029@pucit.edu.pk
http://www.arifbutt.me/category/c-behind-the-curtain/

Today’s Agenda
• Introduction to Pointers and Functions

• Concept of Activation Record

• Passing Arguments to Function by Pointers

• Passing Pointer to a Constant

• Passing 1D Integer Array to Function

• Passing 2D Integer Array to Function

• Passing Array of Character of Strings to Function

• Returning a Pointer from a Function
Muhammad Arif Butt (PUCIT) 2

/*let’s start with this example function for swapping the values of
two variables*/
#include<stdio.h>

void swap(int,int);

int main(){

int n1=7, n2=10;

printf("Before swap:\tn1=%d, n2=%d\n",n1,n2);

swap(n1,n2); //calling swap() function

printf("After swap:\tn1=%d, n2=%d\n",n1,n2);

return 0;}

void swap(int num1,int num2){ //for swapping values

int temp=num1;

num1=num2;

num2=temp;}

Pointers and Functions

• Output of the above program is:
Before swap: n1=7, n2=10

After swap: n1=7, n2=10

• You see that the values have not been swapped

• Let’s learn this by drawing the stack frame of this
program

•Note: By stack frame, it means the activation
record

Muhammad Arif Butt (PUCIT) 4

Pointers and Functions(cont…)

envp

argv

argc

return address

local variables of main()
n1

n2

num2

num1

return address

local variable of swap()
temp

arguments of main()
in reverse order

return address is the address
of the calling function of main()

return address is the address of
the statement in main() where
the swap() is going to fall back

S
ta

ck
 f

ra
m

e
 o

f
m
a
i
n
(
)

Pointers and Functions(cont…)

Muhammad Arif Butt (PUCIT) 5

S
ta

ck
 f

ra
m

e
 o

f
s
w
a
p
(
)

Reason for no swap in above program

• Two functions main() and swap() have different
stack frames

• There is no relation between the variables of stack
frames of two functions

• So a swap didn’t take place

• Solution Program:

• Now let’s write another program for swapping the
values using pointers

Muhammad Arif Butt (PUCIT) 6

Pointers and Functions(cont…)

#include<stdio.h>

void swap(int* const,int* const);

int main(){

int n1=7,n2=10;

printf("Before swap:\tn1=%d, n2=%d\n",n1,n2);

swap(&n1,&n2); //addresses are being passed

printf("After swap:\tn1=%d, n2=%d\n",n1,n2);

return 0;}

void swap(int* const pnum1,int* const pnum2){

int temp=*pnum1;

*pnum1=*pnum2;

*pnum2=temp;}

//pointers have swapped values at the addresses passed

Pointers and Functions(cont…)

• Output of the above program is:
Before swap: n1=7, n2=10

After swap: n1=10, n2=7

• You see that a swap has occurred

• Now let’s understand this by drawing the stack
frame of this program

Muhammad Arif Butt (PUCIT) 8

Pointers and Functions(cont…)

envp

argv

argc

return address

local variables of main()
n1

n2

pnum2

pnum1

return address

local variable of swap()
temp

arguments of main()
in reverse order

return address is the address
of the calling function of main()

return address is the address of
the statement in main() where
the swap() is going to fall back

S
ta

ck
 f

ra
m

e
 o

f
m
a
i
n
(
)

Pointers and Functions(cont…)

Muhammad Arif Butt (PUCIT) 9

S
ta

ck
 f

ra
m

e
 o

f
s
w
a
p
(
)

Reason for why a swap occurred

• Although Two functions main() and swap() have
different stack frames

• There is a relation between the variables of stack
frames of two functions as the pointers pnum1 and
pnum2 in the stack frame of swap() are pointing to
the variables n1 and n2 in main(), respectively

• And the code swaps the values at the locations of
pnum1 and pnum2 are pointing

• So a swap has occurred
Muhammad Arif Butt (PUCIT) 10

Pointers and Functions(cont…)

Contents of Stack frame

i. Function arguments

ii. Return Address

iii. Local variables to functions

• Other than these there are two pointers that are used by
the runtime system to manage the stack

iv. Stack Pointer, it points to the top of the stack. ESP is
the register in intel for holding its value

v. Base Pointer, it points to the location within the frame
where the return address is saved. In intel, register for
holding its value is EBP

Muhammad Arif Butt (PUCIT) 11

Pointers and Functions(cont…)

Primary Reason

• Primary reason for using pointers with functions
is “to allow the function to modify the data” in
the caller function

•Note: There is always one stack frame that is
active and that is the top most stack frame

Muhammad Arif Butt (PUCIT) 12

Pointers and Functions(cont…)

Passing Pointer to a Constant
• Let’s start with a function example

• void f1(const int* n1,int*n2){ /* const int* n1

says that n1 is a non-constant pointer pointing to a data
that is constant*/
*n2=*n1; //OK as data pointed by n2 is non-constant

*n1=*n2; /*error as data pointed by n1 is constant
so cannot be changed*/
(*n1)++; /*error as data pointed by n1 cannot be
incremented*/
*n1++;} /*OK as n1 is not a constant so its value
can be changed*/

Muhammad Arif Butt (PUCIT) 13

Passing a 1D array to a Function
• We can pass a 1D array to a function using any of
the following two ways

Option 1:(Using Array notation)
• void print1(int arr[],const int size)

• //here the subscript indicates that an array will
be passed to arr

• //size is necessary to be passed as we do not know
that how many elements are there inside the array

Muhammad Arif Butt (PUCIT) 14

Option2:(Using Pointer notation)
• void print2(int* ptr,const int size)

• ptr can be passed the address of any integer
memory, we will pass it the address of the array
so that we can use ptr as array pointer in the
function

Muhammad Arif Butt (PUCIT) 15

Passing a 1D array to a Function(cont…)

/*Program showing passing a 1D array to a function using array
notation and pointer notation*/
#include<stdio.h>

void print1(int [],const int);//array notation

void print2(int*,const int); //pointer notation

int main(){

int arr[5]={1,2,3,4,5};

printf("Printing 1D array using array notation:\n");

print1(arr,5);/*arr holds the starting address of the

array*/

printf("Printing 1D array using pointer notation:\n");

print2(arr,5); //calling in the same way as print1()

return 0;}

Passing a 1D array to a Function(cont…)

void print1(int arr[],const int size){

for(int i=0;i<size;i++)

printf("%d\t",*(arr+i)); /*We can also use

subscript notation*/
printf("\n");

}

void print2(int* arr,const int size){

for(int i=0;i<size;i++)

printf("%d\t",arr[i]); /* We can also use pointer

notation*/
printf("\n");

}

Passing a 1D array to a Function(cont…)

• Output of the above program is:
Printing 1D array using array notation:

1 2 3 4 5

Printing 1D array using pointer notation:

1 2 3 4 5

Muhammad Arif Butt (PUCIT) 18

Passing a 1D array to a Function(cont…)

Passing a 2D Array to a Function
• There are three ways for this

• e.g. int arr[4][3]={1,2,3,…,12}; //array declared in
main()

Option 1:(Using Array notation)

• void print1(int arr[][3],const int rows);

• In array notation, the no. of columns are passed along
with the array

• And no. of rows are passed explicitly

Option 2:(Using Pointer notation)

• void print2(int (*arr)[3],const int rows);

• The first argument says that arr is a pointer to a 1D
array of integers of size 3

Option 3:(Use a simple pointer)

• void print3(int* arr, const int rows, const int

cols){

• //here first argument is a pointer to an integer, and in
this pointer address of the first element of the array is
passed as an argument

• //Then there are no. of rows and cols
for(int i=0;i<rows;i++){

for(int j=0;j<cols;j++)

printf(“%d\t”,*(arr+(i*cols)+j)); /*cannot
use subscript notation here*/

printf(“\n”);

}} 20

Passing a 2D array to a Function(cont…)

*(arr+(i*cols)+j)

• In this statement, i*cols steps a complete row for every
iteration of the outer loop

• And then +j is used to iterate through the elements of the
row

• Outer * is used to dereference the value of the pointer
arr

Muhammad Arif Butt (PUCIT) 21

Passing a 2D array to a Function(cont…)

/*Program showing passing a 2D array to a function using array
notation, pointer notation and simple pointer to an int notation*/

#include<stdio.h>

void print1(int [][3],const int);

void print2(int (*)[3],const int);

void print3(int*,const int,const int);

int main(){

//int arr[4][3]={1,2,3,4,5,6,7,8,9,10,11,12};

int arr[][3]={1,2,3,4,5,6,7,8,9,10,11,12};

printf("Passing 2D array using array notation:\n");

print1(arr,4);

Passing a 2D array to a Function(cont…)

printf("Passing 2D array using pointer to an

array:\n");

print2(arr,4);

printf("Passing 2D array using pointer to int:\n");

print3(&arr[0][0],4,3);

return 0;}

void print1(int arr[][3],const int rows){

for(int i=0;i<rows;i++){

for(int j=0;j<3;j++)

printf("%d\t",arr[i][j]);

printf("\n");

}

}

Passing a 2D array to a Function(cont…)

void print2(int (*arr)[3],const int rows){

for(int i=0;i<rows;i++){

for(int j=0;j<3;j++)

printf("%d\t",arr[i][j]);

printf("\n");

}}

void print3(int* arr,const int rows,const int cols){

for(int i=0;i<rows;i++){

for(int j=0;j<cols;j++)

printf("%d\t",*(arr+(i*cols)+j)); /*cannot use
double subscript operator here*/

printf("\n");

}

}

Passing a 2D array to a Function(cont…)

• Output of the above program is:
Passing 2D array using array notation:

1 2 3

4 5 6

7 8 9

10 11 12

Passing 2D array using pointer to an array:

1 2 3

4 5 6

7 8 9

10 11 12

Passing 2D array using pointer to int:

1 2 3

4 5 6

7 8 9

10 11 12
Muhammad Arif Butt (PUCIT) 25

Passing a 2D array to a Function(cont…)

Passing Array of Character of
Strings to Function
• void print(char* names[],int count){

• //first argument is an array of character of
strings

• //second argument is the size of the array

• To call the function, we will pass the array name and
its size

Muhammad Arif Butt (PUCIT) 26

#include<stdio.h>

void print(char*[],int);

int main(){

char* names[5]={"ArifButt","Rauf","Maaz","Hadeed","Mujahid"};

print(names,5);

return 0;

}

void print(char* names[],int count){

for(int i=0;i<count;i++)

printf("%s\n",names[i]);

}

Passing Array of Character of Strings to Function(cont…)

• Output of the above program is:
Arif Butt

Rauf

Maaz

Hadeed

Mujahid

Muhammad Arif Butt (PUCIT) 28

Passing Array of Character of Strings to Function(cont…)

/*Let’s explain this through program examples*/

//the program computes the square of a number

#include<stdio.h>

int* square(int);

int main(){

int a=5;

int* result = square(a);

printf("Square of %d is %d\n",a,*result);

return 0;}

int* square(int n){

int result=n*n;

return &result;} /*returning the address of the local
variable result*/

Returning a Pointer from a Function

• Output of the above program is:
Segmentation fault (core dumped) //an error!

• In this program, the address of a local variable
‘result’ is being returned to the main() from the
square()

• As result is declared in the stack frame of square(),

and when the stack frame of square() is popped out of
the stack at the end of the function, result no more
exists there. While we are returning its address to the
main(),which causes segmentation fault when we try to
access result in main()

Muhammad Arif Butt (PUCIT) 30

Returning a Pointer from a Function(cont…)

/*A static variable is returned from the function*/

#include<stdio.h>

int* square(int);

int main(){

int a=5;

int* result = square(a);

printf("Square of %d is %d\n",a,*result);

return 0;}

int* square(int n){

static int result; //declared static

result=n*n;

return &result;} //returning the value of static variable

Returning a Pointer from a Function(cont…)

• Output of the above program is:

Square of 5 is 25

• We have used here static keyword with the result

variable, which causes result to retain its value between
various calls to the function

Limitation in the above program

• The condition in the above program works OK for single
threaded program, but can cause problems like race
condition when this program is called by multiple threads

• Using global variable for returning values from function will
also suffer from the same limitation

Muhammad Arif Butt (PUCIT) 32

Returning a Pointer from a Function(cont…)

/*Now Option 1 is to allocate memory on heap in square() using
malloc or new and then returning the address of that memory*/
#include<stdlib.h>

#include<stdio.h>

int* square(int);

int main(){

int a=5;

int* result = square(a);

printf("Square of %d is %d\n",a,*result);

free(result); //freeing the memory on heap
return 0;}

int* square(int n){

int* result=(int*)malloc(sizeof(int)*1); //allocating memory
*result=n*n;

return result;}

Returning a Pointer from a Function(cont…)

• Output of the above program is:
Square of 5 is 25

• The memory allocated in the called function must be
freed by the caller function, if we don’t do this then it
may cause heap leakage issue

Muhammad Arif Butt (PUCIT) 34

Returning a Pointer from a Function(cont…)

/*Option 2: variable is declared in main() and that variable is passed
as a pointer to square(), and the data of that variable is updated in
square()*/

#include<stdlib.h>

#include<stdio.h>

void square(int,int*); /*the function may of may not return any
value*/
int main(){

int a=5;

int result;

square(a,&result);//address of local variable is being passed

printf("Square of %d is %d\n",a,result);

return 0;}

void square(int n,int* result){

*result=n*n;} /*square is stored at the address pointed by
result*/

Returning a Pointer from a Function(cont…)

• Output of the above program is:
Square of 5 is 25

• So, these are the two ways of returning value from a
function, you may use any of them depending upon your
conditions

Muhammad Arif Butt (PUCIT) 36

Returning a Pointer from a Function(cont…)

Muhammad Arif Butt (PUCIT) 37

