
C-Refresher: Session 10
Disk IO

Arif Butt
Summer 2017

I am Thankful to my student Muhammad Zubair bcsf14m029@pucit.edu.pk for preparation of
these slides in accordance with my video lectures at

http://www.arifbutt.me/category/c-behind-the-curtain/

mailto:bcsf14m029@pucit.edu.pk
http://www.arifbutt.me/category/c-behind-the-curtain/

Today’s Agenda

• Introduction to Program Files

• Opening/Closing a Disk File

• Reading from an Open File

• Random Access

• Binary Files

Muhammad Arif Butt (PUCIT) 2

Introduction
• When a program starts its execution, there are three

streams that are open at the start of the program

i. stdin

ii. stdout
iii. stderr

• We know how to read/write from these streams using
formatted and unformatted I/O

• To read a file residing on the hard disk, we need to open
a new stream between our program and the file residing
on the hard disk

Muhammad Arif Butt (PUCIT) 3

Opening/Closing a Disk File
• To open a stream between our program and the file we use
fopen() library call

• Syntax

• File *fopen(const char* path,const char* mode);

• It takes two arguments both are of type string

• In case of success, it returns a pointer of type FILE*,
pointing to the file

• In case of failure, it returns a NULL pointer

• First argument is the file name with the absolute or relative
path

• Second argument specifies the mode for opening the file
Muhammad Arif Butt (PUCIT) 4

Text file
Symbol

Binary file
Symbol

Mode Description

r rb Opens the file for reading with pointer at start
of file
Call fails if file doesn’t exist

r+ r+b Same as r but allows writing as well

w wb Opens file for writing with write pointer at
start
If file doesn’t exist, a new file is created

w+ w+b Same as w but allows reading as well

a ab Opens file for writing, with write pointer at the
end
If file doesn’t exist, creates a new file

a+ a+b Same as a but allows reading as well

Opening/Closing a Disk File(cont…)
Return value

• On success:

• fopen() returns a file pointer that is used in all the
subsequent calls, i.e. read, write and finally close the file

• This pointer points to a structure of type FILE

• FILE structure contains information about the file like

• location of buffer
• current file offset(cfo)

• Opening mode

• Flags like EOF(End Of File flag)its value can be checked
by feof(fp)

Muhammad Arif Butt (PUCIT) 6

Opening/Closing a Disk File(cont…)
• On Error: fopen() returns NULL

• A file opened must be closed after you have performed all
the necessary operations on it

• Closing a file breaks the connection between the file on disk
and the file pointer

• int fclose(FILE *stream); /*this function is used to
close an opened file*/

• It takes file pointer as the argument and closes that file

• When a program terminates, all the opened files are
automatically closed

• But it is a good practice to close all the opened files
Muhammad Arif Butt (PUCIT) 7

Reading from an Open File
• There are two categories of functions

1. Unformatted

2. Formatted

Unformatted functions

1. Reading character by character and displaying on
stdout till EOF

• fputc() and fgetc() are the functions used for this

• Syntax

• int fgetc(FILE* stream);

• It takes file pointer as argument and reads from that file

Muhammad Arif Butt (PUCIT) 8

Reading from an Open File(cont…)
• fgetc() reads a character from the file given as argument

and returns it as an unsigned character cast to an int

• int fputc(int c,FILE *stream);

• fputc() writes character c to the file given as the 2nd

argument

• e.g. fputc(c,stdout); //it writes c to stdout

• Let’s see a program using fgetc() and fputc()

Muhammad Arif Butt (PUCIT) 9

Reading from an Open File(cont…)

/*The program reads from file character by character till EOF and
displays it on stdout*/

#include<stdio.h>

#include<stdlib.h>

int main(int argc,char* argv[]){

if(argc!=2){ //checking if file name given or not

printf("Invalid number of arguments entered.

Please enter filename to display its contents....\n");

exit(1);}

FILE* fp=fopen(argv[1],"r"); /*passing argv[1] for
the file name, as user will pass file name in it, and opening the file
in read only mode*/

Reading from an Open File(cont…)

if(fp==NULL){//checking if the file has opened or not

perror("fopen() failed\n");exit(1);}

int c;

while((c=fgetc(fp))!=EOF) /*reading from file character
by character till EOF*/

fputc(c,stdout); /*printing character by character on
stdout, could also be done using putc(c);*/

fclose(fp); //closing the file

return 0;}

• When you execute the program like
• ./a.out p1.c //p1.c is the name of this program file

• It will print the contents of file p1.c on screen

Muhammad Arif Butt (PUCIT) 12

Reading from an Open File(cont…)

Reading from an Open File(cont…)
2. Reading Line by Line and displaying on stdout till EOF

• fputs() and fgets() are used for writing and reading
respectively

• Syntax

• fgets(char* s,int size,FILE* stream);

• It reads size number of characters from file given as 3rd

argument and stores it in string s

• If fgets() reaches end of line, it places \n character in s

and then \0 and then ends reading

• int fputs(const char* s,FILE *stream);

• It places the string s on the file given as the 2nd argument
Muhammad Arif Butt (PUCIT) 13

Reading from an Open File(cont…)

/*The program reads from the file line by line and displays the
data read on the screen*/

#include<stdio.h>

#include<stdlib.h>

int main(int argc,char* argv[]){

if(argc!=2){//checking if file name given or not

printf("Invalid number of arguments entered.

Please enter filename to display its contents....\n");

exit(1);

}

FILE* fp=fopen(argv[1],"r"); /*passing argv[1] for
the file name, as user will pass file name in it, and opening the file
in read only mode*/

Reading from an Open File(cont…)

if(fp==NULL){ //checking if the file has opened or not

perror("fopen() failed\n");exit(1);}

char buff[512];

while(fgets(buff,512,fp)!=NULL) /*reading from file line
by line till EOF*/

fputs(buff,stdout); /*printing line by line on
stdout, could also be done using puts(buff);*/

fclose(fp); //closing the file

return 0;

}

• When you execute the program like
• ./a.out p1.c /*p1.c is the name of this program

file*/

• It will print the contents of file p1.c on screen

• Reading and writing character by character is far slow
than reading and writing line by line

• Now that we have done reading using Unformatted
functions, let’s write a program that writes to a file

Muhammad Arif Butt (PUCIT) 16

Reading from an Open File(cont…)

Reading from an Open File(cont…)
/*The program takes a string from user and writes it to a file
character by character*/
#include<stdio.h>

#include<stdlib.h>

#include<string.h>

int main(int argc,char* argv[]){

if(argc!=2){

printf("Invalid number of arguments entered. Please

enter filename to display its contents....\n");

exit(1);}

FILE* fp=fopen(argv[1],"a");/*opening the file in append
mode*/

if(fp==NULL){

perror("fopen() failed\n");exit(1);}

Reading from an Open File(cont…)
/*taking input from the user*/

char name[20];

printf("Enter you friends name: ");

fgets(name,20,stdin);

int len=strlen(name);

name[len-1]='\0';/*replacing \n with NULL character*/

int i=0;

/*writing character by character from index 0 till NULL

character*/
while(name[i]!='\0')

fputc(name[i++],fp);

fputc('\n',fp); /*placing newline character at the end*/

fclose(fp);

return 0;}

• When you execute the program like
• ./a.out newFile.txt /*newFile.txt is the

name of this program file*/

• It will take input from user and write that to file
character by character

• Now let’s write a program that takes input from user
and writes it to the file line by line

Muhammad Arif Butt (PUCIT) 19

Reading from an Open File(cont…)

Reading from an Open File(cont…)

/*Program takes a string from user and writes it to a file line by
line*/
#include<stdio.h>

#include<stdlib.h>

#include<string.h>

int main(int argc,char* argv[]){

if(argc!=2){

printf("Invalid number of arguments entered. Please

enter filename to display its contents....\n");

exit(1);

}

FILE* fp=fopen(argv[1],"a");//opening in append mode

Reading from an Open File(cont…)

if(fp==NULL){

perror("fopen() failed\n");exit(1);}

char name[20];

printf("Enter you friends name: ");

scanf("%[^\n]s",name); /*taking input using scanf(), it will
automatically place \0 at the end*/

fputs(name,fp); //writing the complete name

fputc('\n',fp);

printf("Done..Bye..Bye..\n");

fclose(fp);

return 0;}

• When you execute the program like
• ./a.out newFile.txt /*newFile.txt is the

name of this program file*/

• It will take input from user and write that to file line by
line

• Remember that the file may contain integers or floating
point numbers, but we have read them all as characters

• If we want to perform any operations on the values, we
may have to manually convert them to the appropriate
datatype

Muhammad Arif Butt (PUCIT) 22

Reading from an Open File(cont…)

Reading from an Open File(cont…)
Formatted Functions

• Formatted functions provide us with the ability that we
do not have to convert from characters to integers or
other datatypes manually, rather they do this for us

• The functions used here are
• fscanf(); //which is similar to scanf() with an

additional initial argument and that is the file pointer
from where we want to read

• fprintf(); //it is similar to printf() with an
additional initial argument and that is the file pointer
where we want to write

Muhammad Arif Butt (PUCIT) 23

Reading from an Open File(cont…)
• Syntax

• int fscanf(FILE* stream, const char* format,…);

• int fprintf(FILE* stream,const char* format,…);

Muhammad Arif Butt (PUCIT) 24

Reading from an Open File(cont…)

/*The program reads from a file using formatted functions*/

#include<stdio.h>

#include<stdlib.h>

int main(int argc,char* argv[]){

if(argc!=2){

printf("Invalid number of arguments entered.

Please enter filename to display its contents....\n");

exit(1);

}

FILE* fp=fopen(argv[1],"r");

if(fp==NULL){

perror("fopen() failed\n");exit(1);}

Reading from an Open File(cont…)
int n;

fscanf(fp,"%d,",&n);/*Here integer will be read from fp

and stored in n*/

while(feof(fp)==0){

fprintf(stdout,"%d ",n);

fscanf(fp,"%d,",&n); /*comma after %d indicates
that read till a comma too, integers, by default, are read until a
space, tab or newline character occurs, here comma is specified
because the numbers may be comma separated*/

}

printf("\n");

fclose(fp);

return 0;}

• For the file picture shown, output of the above program
is:
1 2 3 4 5 6 7 8 9 10

• You see that the numbers in the file are space, tab,
comma and newline separated

• And here, they have been shown on a single line
Muhammad Arif Butt (PUCIT) 27

Reading from an Open File(cont…)

Random Access
• Till now, we have read sequential access, i.e. we have

read and written the file in a sequence as we cannot
jump from one location to the other

• In random access, we can jump from one location to the
other location in the file and then read/write there

• Some of the functions related to random access are

1. ftell()

• long ftell(FILE* stream);

• It will tell the current location of the file offset in the
file whose pointer has been passed as argument

Muhammad Arif Butt (PUCIT) 28

Random Access(cont…)
2. rewind()

• void rewind(FILE *stream);

• It will take the current file offset to the beginning of
the file

3. fseek()

• int fseek(FILE *stream, long offset, int whence);

• First argument is the pointer to the file

• Second argument is the no. of bytes to jump

• Third argument is the location from where offset no. of
bytes are to jump

Muhammad Arif Butt (PUCIT) 29

Random Access(cont…)
• In simple words, it says that jump (offset+whence) no.

of bytes in the file stream

• Some constants for whence are

• SEEK_SET i.e. from the start of the file

• e.g. fseek(fp,0,SEEK_SET); //where fp is the file
pointer

• This statement is just like rewind(fp);

• fseek(fp,50,SEEK_SET);

• It says that jump 50 bytes from the start of the file

• SEEK_CUR i.e. the current position of the file offset
Muhammad Arif Butt (PUCIT) 30

Random Access(cont…)
• fseek(fp,50,SEEK_CUR);

• It says that jump 50 bytes ahead from the current
position of the file offset

• SEEK_END i.e. the end of the file

• fseek(fp,50,SEEK_END);

• It says that jump 50 bytes ahead from the end of the
file

• In case of reading, if we try to read after jumping 50

bytes, it will create error

• However, in case of writing, it will work OK
Muhammad Arif Butt (PUCIT) 31

Random Access(cont…)
• When we jump n bytes ahead from the end, it will

create a hole of n bytes in the file, which will be
containing NULL

• However, this does not affect the size of the file

• If we copy this file to another, the new file will not be
containing a hole in it and will have more size than the
original file

Muhammad Arif Butt (PUCIT) 32

Binary Files
• Binary files are used for reading files of custom

formats i.e. the files other than the text format

• For example, a.out is a binary file

• You cannot read a.out using cat program because cat
program has been written to read only text files

• readelf program can be used to read binary files

• Other examples of binary files include image and video
files

Muhammad Arif Butt (PUCIT) 33

Binary Files(cont…)
• Let’s discuss a scenario is which we need to create a

binary file

• For example, here is an image of a file

• The file contains records of different friends with
their Record no., Name and City

• Now, for example, we want to change the city of Jamil
from Lahore to Rawalpindi

Muhammad Arif Butt (PUCIT) 34

Binary Files(cont…)
• Now as Lahore takes 6 characters and Rawalpindi takes

10 characters, so if we try to make changes in this file
it will overwrite Rauf’s data

• So, one solution is that we make new file, write in it all
the record till Jamil as it is, then write Rawalpindi
instead of Lahore and then write the remaining record

• After that delete the old file and renaming the new file
with the previous file name

• Doing all this stuff is obviously not a good idea, as it is
going to take a lot of time

Muhammad Arif Butt (PUCIT) 35

Binary Files(cont…)
• A better solution to all this is, we use Binary files

instead of text files

• In binary files, we will allocate fix space to each record

• Consider, for example, the following configuration

• Now, in this configuration we can easily move to a record
number

• For example, to move to record number 11, we will use
the following statement

Record Number Name City Total Bytes:
54 4 Bytes(int) 20 Bytes 30 Bytes

Muhammad Arif Butt (PUCIT) 36

Binary Files(cont…)
• fseek(fp,11*54,SEEK_SET);

• As each record requires 54 bytes and we are to move to
the 11th record so we are stepping 11*54 bytes ahead
from the start

• The functions used for reading and writing to binary files
are fread() and fwrite()

• Syntax

• size_t fread(void *ptr, size_t size, size_t

nmemb, FILE *stream);

• Here, first argument is the structure pointer, where
fread() will store the record read from file

Muhammad Arif Butt (PUCIT) 37

Binary Files(cont…)
• Second argument is the size of structure

• Third is the number of records to read

• Fourth is the FILE* pointer from where we will read the
record

• size_t fwrite(const void* ptr, size_t size,

size_t nmemb, FILE *stream);

• Here, arguments are just like the previous ones with the
difference that here data read from the structure
variable will be written to the file specified

• Let’s write some program to understand use of fread()

and fwrite()
Muhammad Arif Butt (PUCIT) 38

Binary Files(cont…)
/*The program reads from a binary file using fread() and
displays the data on screen*/

#include<stdio.h>

#include<stdlib.h>

struct Student{

int id;

char name[20];

char address[30];};

int main(int argc,char* argv[]){

if(argc!=2){

printf("Invalid number of arguments entered.

Please enter filename to display its contents....\n");

exit(1); }

struct Student s1;

Binary Files(cont…)
FILE* fp=fopen(argv[1],"rb");

if(fp==NULL){

perror("fopen() failed\n");exit(1);}

/*fread() used to store 1 record from fp to s1*/

fread((struct Student*)&s1,sizeof(s1),1,fp);

while(!feof(fp)){//read till EOF

printf("Student ID: %d\n",s1.id);

printf("Name: %s\n",s1.name);

printf("Address: %s\n",s1.address);

fread((struct Student*)&s1,sizeof(s1),1,fp);}

fclose(fp);

return 0;}

Binary Files(cont…)
/*The program takes a student’s data from user, stores it in a
Student structure and saves the result in a binary file*/

#include<stdio.h>

#include<stdlib.h>

struct Student{

int id;

char name[20];

char address[30];

};

int main(int argc,char* argv[]){

if(argc!=2){

printf("Invalid number of arguments entered.

Please enter filename to display its contents....\n");

Binary Files(cont…)

exit(1);

}

struct Student s1;

FILE* fp=fopen(argv[1],"wb");

if(fp==NULL){

perror("fopen() failed\n");exit(1);}

printf("Roll Number: ");

scanf("%d",&s1.id);

getchar();

printf("Name: ");

scanf("%[^\n]s",s1.name);

getchar();

Binary Files(cont…)

printf("Address: ");

scanf("%[^\n]s",s1.address);

fwrite((struct Student*)&s1,sizeof(s1),1,fp);

printf("Done..Bye Bye...\n");

fclose(fp);

return 0;}

Muhammad Arif Butt (PUCIT) 44

