
1Punjab University College Of Information Technology(PUCIT)

Instructor:Arif Butt

Video Lecture # 04
UNIX make Utility

Course: SYSTEM PROGRAMMING

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

2Punjab University College Of Information Technology(PUCIT)

Today's Agenda
Instructor:Arif Butt

● Introduction to UNIX make utility
● Structure of UNIX makefile
● How make utility work (Examples 1-2)
● Multiple targets in a makefile (Example 3)
● Multiple makefiles in a Project (Example 4)
● Use of macros in a makefile (Example 5)

3

Make Utility-Introduction
Instructor:Arif Butt

1. Imagine you write a program and divide it into hundred .c files and some header
files

2. To make the executable you need to compile those hundred source files to create
hundred relocatable object files and then you need to link those object files to final
executable

3. What happens if we make changes to one of these files:
(a) Recompile all the files and then link all of them
(b) Recompile only the file which has changed and then link

➢ What if instead of .c file a .h file has changed
➢ Solution: Recompile only those .c files that include this header file and then link

4. UNIX make utility is a powerful tool that allows you to manage compilation of
multiple modules into an executable

5. It reads a specification file called “makefile” or “Makefile”, that describes
how the modules of a s/w system depend on each other. If you want to use a non-
standard name you can specify that name to make using -f option

6. Make utility uses this dependency specification in the makefile and the time
when various components were modified, in order to minimize the amount of
recompilation

Punjab University College Of Information Technology(PUCIT)

4Punjab University College Of Information Technology(PUCIT)

Structure of Makefile
Instructor:Arif Butt

target : dependency1 dependancy2 ... dependency n
<tab> command

Name of the executable to be build
Name of the files on which the target depends (.c and .h files)

Shell command to create the target from dependencies

1. This is one dependency rule in a makefile

2. A makefile may have several such rules. Every make rule describes
the dependency relationship

3. Advantages of make utility:

(a) Makes management of large s/w projects with multiple source files easy

(b) No need to recompile a source file that has not been modified, only those
files that have been changed are recompiled, others are simply relinked

5Punjab University College Of Information Technology(PUCIT)

Instructor:Arif Butt

Examples 1-2

6

Instructor:Arif Butt

make[options]
There are several options to make. For details refer to man page. The three most
commonly used are:

Options to make

-f By default make looks for a file “makefile” in the current directory. If
doesn't exist, it looks for “Makefile”. To tell make to use a different
file, user -f option followed by filename

-n To tell make to print out what it would have done w/o actually doing it

-k Tells make to keep going when an error is found, rather than stopping
as soon as the first problem is detected. You can use this to find out in
one go which source files fail to compile

7

Instructor:Arif Butt

Multiple Targets in a Makefile
● A makefile can have multiple targets. We can call a make file with the

name of a particular target
● To tell make to build a particular target, you can pass the target name to

make as parameter (By default, make will try to make the first target listed
in makefile)

● Many programmers specify all as the first target in their makefile and
then list the other targets as being dependencies for all

● A phony target is a target without dependency list. Some important phony
targets are all, clean, install

clean:

-@rm -f *.o
● If there is no .o file in the current working directory, make will return an

error. If we want make to ignore error while executing a command we
proceed the command with a hyphen as done above. Moreover, make print
the command to stdout before executing. If we want to tell make not to print
the command to stdout before executing we use @ character

8Punjab University College Of Information Technology(PUCIT)

Instructor:Arif Butt

Example 3

9

Instructor:Arif Butt

Multiple Makefiles in a Project
● Project source divided in multiple directories
● Different developers involved
● Multiple makefiles
● Top level makefile use include directive
● Include Directive: Tells make to suspend reading the current

makefile and read one or more other makefiles before continuing.

include ./d2/makefile ./d3/makefile

10Punjab University College Of Information Technology(PUCIT)

Instructor:Arif Butt

Example 4

11

Instructor:Arif Butt

Use of Macros in a Makefile
● A Makefile allows us to use macros or variables, so that we can

write it in a more generalized form. Variables allow a text string to be
defined once and substituted in multiple places later

● We can define macros/variables in a makefile as:

MACRONAME=value
● We can access the macros as $(MACRONAME)
● Example: We can use a macro to give options to the compiler, e.g.,

while an application is being developed, it will be compiled with no
optimization but with debugging information included. So we declare
a macro CFLAGS

 CFLAGS = -std=c11 -O0 -ggdb -Wall

and later can use it with all compilation commands like
gcc -c file.c $(CFLAGS)

12Punjab University College Of Information Technology(PUCIT)

Instructor:Arif Butt

Example 5

13

Instructor:Arif Butt

Special Internal Macros
● Each of the following four macros is only expanded just before it is used. So

the meaning of the macro may vary as the makefile progress

$? List of dependencies changed more recently than the
current target

$@ Name of the current target

$< Name of the current dependency

$* Name of the current dependency w/o extension

14Punjab University College Of Information Technology(PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

