‘ Instructor:Arif Butt

o,

Video Lecture # 09

Process Stack
Behind the Curtain

Course: SYSTEM PROGRAMMING

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Punjab University College Of Information Technology (PUCIT) 1

‘ Instructor:Arif Butt

Agenda

Review of a Process Logical Address Space
Command Line Arguments

Environment Variables

Layout of a Process User Stack

Growing and Shrinking of Stack

Stack Buffer Overflow

Non-Local goto using 1ongjmp ()

Punjab University College Of Information Technology (PUCIT) 2

Process Logical Address Space

Instructor:Arif Butt

OxEEEEEEEE |

Oxc0000000
OxbEffffff

\J

OxfTe 9dde

Process Address Space

Kernel virtual memory

User stack
(created at runtime)

‘
t

Memory-mapped region for
shared libraries

T

Memory
I invisible
to user code

+« %esp

(stack
pointer)

&end [

Run-time heap
(created bymalloc)

sedata -
Eetext [3

Read/write segment
(.data, .bss)

O0x0B0O 48000

Read-only segment
(.init, .text, . rodata)

0=x00000000

Unused

- brk

Loaded
from

y the
executable
file

Punjab University College Of Information Technology (PUCIT) 3

Instructor:Arif Butt

Example
logicaladdresses.c

Punjab University College Of Information Technology (PUCIT) 4

Instructor:Arif Butt

Command Line Arguments
&
Environment Variables

Punjab University College Of Information Technology (PUCIT)

‘ Instructor:Arif Butt ‘

> Command Line Arguments

int main(int argc, char *argv([]) {
printf ("No of arguments passed are: %d\n", argc);
printf ("Parameters are:\n");
for(int 1 = 0; argv[i] != NULL ; i++)
printf ("argv[%d] :%s \n", i, argv[i]);
return 0;

}
$./myexe Learning is fun with Arif
int argc char * argv(]
6 N Ilmlylelxlel0
1 ——» L ela/r nii njg\0
2 ——» i s \0
3 —+—» f un\0
4 —»w i t h|\O
5 ——» A r i f\O
6 \0

Punjab University College Of Information Technology (PUCIT) 6

$ cat /etc/passwd

int argc

2

$ 1s -1 /bin

int argc

3

74>

0
1

2

char * argv|[]

4>

0

1

2
3

char * argv|[]

\O

4>
4>

\0

\O

‘ Instructor:Arif Butt ‘

¢ Use of Command Line Arguments

\O

\O

\O

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Example
cmdarg ex2.c

Punjab University College Of Information Technology (PUCIT) 8

D,

‘ Instructor:Arif Butt ‘

Accessing Environment Variables

int extern char **environ;
int main () {
printf ("\n Environment variable passed are:\n");
for (int 1 = 0; environ[i] '= NULL ; i++)
printf ("environ[%d] :$s\n", i, environ[i])
return O;

}
/mvexe char ** environ
Py 0 »LANG=en US.UTF-8\0"
1 — ™ USERNAME=arif\0'
2/ ——» PWD=/home/arif/spv!/08"\0’
3 ——» HOME=/home/arif\0’
4 » SHELL=/bin/bash"\0'
5 ——» PATH=/usr/local/bin:/usr/bin:/bin:"\0'
6 | » HISTFILE=/home/arif/.bash_history"\0'

Punjab University College Of Information Technology (PUCIT)

| ‘ Instructor:Arif Butt ‘

¢ Moditying Environment Variables
The way we can change environment variables on the shell, we can also

change them form within a C program, as well as can create a new
environment variable using library functions like:

char *getenv(const char *name)

int putenv (char *string)

int setenv (const char *name,const char *val,int overwrite)
int unsetenv (const char *name)

int clearenv ()

Reasons to modify the environment variables:
e To build a suitable environment for a process to run

« A form of IPC, since a child gets a copy of its parent's environment
variables at the time 1t is created

Punjab University College Of Information Technology (PUCIT) 10

Instructor:Arif Butt

Layout of a Process Stack

Punjab University College Of Information Technology (PUCIT)

11

Layout of Process Stack

Instructor:Arif Butt

Oxbfffffff

Stack grows from high to
low addresses in Intd,
MIPS, Motorola, & SPARC
architectures.

Oxbffffa7c

Null-terminated
Environment variable strings

+_Fnttnm of stack

Null-terminated command-
line arg strings

(unused)

envp[n]== NULL

envp[n-1]

envp [0]

wi 4eeeees BOVFON

[argviargc]=NULL

argv[argc-1]

argv[ﬂ]

(dynamic linker variables)

envp

u
P

EI’EU

argc

Stack frame for
main

top of stack

Punjab University College Of Information Technology (PUCIT) 12

~¢ Layout of Process Stack (cont...)

Instructor:Arif Butt

« Function Stack Frames OxbEELLEEE

 Used to store local variables OxbEfffale
. For passing ar guments to the functions

FSF of

main ()

< rbp

- —rs

o For storing the return address
o For storing the base pointer
 Stack grows downward

« Frame pointer (rbp)

o Stack top (rsp)

« Reclaiming stack memory

Top of Igtack

|

Punjab University College Of Information Technology (PUCIT)

13

Instructor:Arif Butt

~¢ Function Calling Convention

Function calling convention means.
« How the function arguments are passed?
- Via Stack
- ViaRegisters
- Mix of abovetwo
o Order in which function arguments are passed?
- Right to left
- Left to right
« Who isresponsible for creating the FSF?
- Callee
- Caller
« Who isresponsible for unwinding the stack?
- Callee
- Caller

Different calling conventionsused by C language are Cdecl, stdcall, and fastcall

Punjab University College Of Information Technology (PUCIT) 14

~¢ Stack Growing and Shrinking

Suppose the main () calls another function

foo () , the sequence of steps for creation of
FSF of foo ():

« Arguments are pushed on the stack, in reverse
order

« Contents of rip (return address) is also pushed on
the stack

 The contents of rbp containing starting address of
main stack frame is saved on stack for later use,
and rbp Is moved to where rsp IS pointing to
create new stack frame pointer of function foo ()

« Space created for local variables by moving rsp
down or to lower address

Instructor:Arif Butt

Hi address
FSF of
main ()
Function < rbp
arguments
Function

Return address

rbp

(Function pointer
of main)

Local
variables of

t—rsp

Top of stack

Punjab University College Of Information Technology (PUCIT)

Low address

15

‘ Instructor:Arif Butt

& stack Growing and Shrinking (cont..)

Hi address
: i FSF of
int main(...) { .
main ()
return foo(2,3,4); 4 | P
}
void foo(int a,int b, int c){ ’
int xx = a+2; 2
int yy = b+2; rip
int zz = c+2;
int sum = xx + yy + zz; £bp
return sum; } XX
YY
ZZ
sum
4 rsp
Top of stack

Low address

Punjab University College Of Information Technology (PUCIT) 16

‘ Instructor:Arif Butt

Stack Growing and Shrinking (cont...)

Finally when the foo () function executes return Hi address
statement, memory on the stack is automatically, and very e
eff ciently reclaimed: FSF of
« The saved base pointer is popped and placed in rbp main ()
which moves to the starting address of main FSF < rsp

« The saved return address is popped and placed in rip Top of Stack

« The stack is shrinked by moving the rsp further up to
where rbp IS pointing

int main(...) {

return foo(2,3,4);

}

void foo(int a,int b, int c) {

int xx = a+2;
int yy = b+2;
int zz = c+2;

int sum = xx + yy + zz;
return sum; }

Low address

Punjab University College Of Information Technology (PUCIT) 17

Instructor:Arif Butt

~¢ Overview of Buffer Overflow

A buffer overf bw isabug in a program, which occurs
when more data is written to a block of memory than it
can handle

Punjab University College Of Information Technology (PUCIT) 18

‘ Instructor:Arif Butt

& stack Growing and Shrinking (cont..)

int main(...) {

display (argv[1l]) ;

}

void display (char* str) {

char buff[1l0];
strcpy (buff, str);
printf ("Data is:%s\n", buff);

Hi address
FSF of
main ()
< rbp
*str
rip
rbp
buff
<+ rsp
Top of stack
Low address

Punjab University College Of Information Technology (PUCIT)

19

Instructor:Arif Butt

Non-Local goto

Punjab University College Of Information Technology (PUCIT) 20

Instructor:Arif Butt

> Things To Do

0.K., and nowyou'll do
exactly what I'm telling you !

If you have problems visit me in counseling hours.

Punjab University College Of Information Technology (PUCIT) 21

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

