
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Video Lecture # 09
Process Stack

Behind the Curtain

Course: SYSTEM PROGRAMMING

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

2Punjab University College Of Information Technology (PUCIT)

Agenda
Instructor:Arif Butt

● Review of a Process Logical Address Space
● Command Line Arguments
● Environment Variables
● Layout of a Process User Stack
● Growing and Shrinking of Stack
● Stack Buffer Overflow
● Non-Local goto using longjmp()

3Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Process Logical Address Space
Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

&end

4Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Example
logicaladdresses.c

5Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Command Line Arguments
&

Environment Variables

6Punjab University College Of Information Technology (PUCIT)

Command Line Arguments
Instructor:Arif Butt

\0

L e a r n i n g \0

i s \0

f u n \0

w i t h \0

A r i f \0

char * argv[]

6

int argc

. / m y e x e \00

1

2

3

4

5

6

﻿$./myexe Learning is fun with Arif

﻿int main(int argc, char *argv[]){
 printf("No of arguments passed are: %d\n",argc);
 printf("Parameters are:\n");
 for(int i = 0; argv[i] != NULL ; i++)
 printf("argv[%d]:%s \n", i, argv[i]);
 return 0;
}

7Punjab University College Of Information Technology (PUCIT)

Use of Command Line Arguments
Instructor:Arif Butt

\0

/ e t c / p a s s w d \0

char * argv[]

2
int argc

0

1

2

﻿$ cat /etc/passwd

c a t \0

\0

- l \0

char * argv[]

3
int argc

0

1

2

﻿$ ls -l /bin

l s \0

/ b i n \0

3

8Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Example
cmdarg_ex2.c

9Punjab University College Of Information Technology (PUCIT)

Accessing Environment Variables
Instructor:Arif Butt

char ** environ

﻿LANG=en_US.UTF-8'\0'0

1

2

3

4

5

6

﻿$./myexe

﻿int ﻿extern char **environ;
int main(){
 printf("\n Environment variable passed are:\n");
 for (int i = 0; environ[i] != NULL ; i++)
 printf("environ[%d]:%s\n", i, environ[i]);
 return 0;
}

﻿USERNAME=arif'\0'

﻿PWD=/home/arif/spvl/08'\0'

﻿HOME=/home/arif'\0'

﻿SHELL=/bin/bash'\0'

﻿PATH=/usr/local/bin:/usr/bin:/bin:'\0'

..

. ﻿HISTFILE=/home/arif/.bash_history'\0'

10Punjab University College Of Information Technology (PUCIT)

Modifying Environment Variables
Instructor:Arif Butt

Reasons to modify the environment variables:
● To build a suitable environment for a process to run
● A form of IPC, since a child gets a copy of its parent's environment

variables at the time it is created

The way we can change environment variables on the shell, we can also
change them form within a C program, as well as can create a new
environment variable using library functions like:

char *getenv(const char *name)
int putenv(char *string)
int setenv(const char *name,const char *val,int overwrite)
int unsetenv(const char *name)
int clearenv()

11Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Layout of a Process Stack

12Punjab University College Of Information Technology (PUCIT)

Layout of Process Stack
Instructor:Arif Butt

0xbfffffff

0xbffffa7c

Stack grows from high to
low addresses in Intel,
MIPS, Motorola, & SPARC
architectures.

13Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

FSF of

main()

Top of stack

Layout of Process Stack (cont...)
rbp

rsp

● Function Stack Frames
● Used to store local variables
● For passing arguments to the functions
● For storing the return address
● For storing the base pointer
● Stack grows downward
● Frame pointer (rbp)
● Stack top (rsp)
● Reclaiming stack memory

0xbfffffff

0xbffffa7c

14Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Function Calling Convention
Function calling convention means:
● How the function arguments are passed?

➢ Via Stack
➢ Via Registers
➢ Mix of above two

● Order in which function arguments are passed?
➢ Right to left
➢ Left to right

● Who is responsible for creating the FSF?
➢ Callee
➢ Caller

● Who is responsible for unwinding the stack?
➢ Callee
➢ Caller

Different calling conventions used by C language are Cdecl, stdcall, and fastcall

15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

FSF of

main()

Suppose the main() calls another function
foo() , the sequence of steps for creation of
FSF of foo():

Top of stack

rbp

rsp

Function
arguments

Function
Return address

rbp
(Function pointer

of main)

Local
variables of

Hi address

Low address

Stack Growing and Shrinking

● Arguments are pushed on the stack, in reverse
order

● Contents of rip (return address) is also pushed on
the stack

● The contents of rbp containing starting address of
main stack frame is saved on stack for later use,
and rbp is moved to where rsp is pointing to
create new stack frame pointer of function foo()

● Space created for local variables by moving rsp
down or to lower address

16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

FSF of

main()

4

3

2

rip

rbp

xx

yy

zz

sum

Stack Growing and Shrinking (cont...)
Hi address

rbp

Top of stack
rsp

Low address

int main(...){
 ...
 return foo(2,3,4);
}
void foo(int a,int b, int c){
 int xx = a+2;
 int yy = b+2;
 int zz = c+2;
 int sum = xx + yy + zz;
 return sum; }

17Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

FSF of

main()

Stack Growing and Shrinking (cont...)
Hi address

rbp

Top of stack
rsp

Low address

int main(...){
 ...
 return foo(2,3,4);
}
void foo(int a,int b, int c){
 int xx = a+2;
 int yy = b+2;
 int zz = c+2;
 int sum = xx + yy + zz;
 return sum; }

Finally when the foo() function executes return
statement, memory on the stack is automatically, and very
eff iciently reclaimed:

● The saved base pointer is popped and placed in rbp
which moves to the starting address of main FSF

● The saved return address is popped and placed in rip
● The stack is shrinked by moving the rsp further up to

where rbp is pointing

18Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Overview of Buffer Overflow

A buffer overf low is a bug in a program, which occurs
when more data is written to a block of memory than it

can handle

19Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

FSF of

main()

*str

rip

rbp

buff

Stack Growing and Shrinking (cont...)
Hi address

rbp

Top of stack

rsp

Low address

int main(...){
﻿ ...

display(argv[1]);
...

}
﻿void display(char* str){

char buff[10];
 strcpy(buff, str);

printf("Data is:%s\n", buff);
}

20Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Non-Local goto

21Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

