
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Video Lecture # 13
File Management

Course: SYSTEM PROGRAMMING

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● Repositioning current file offset using lseek()
● Creating and deleting hard and soft links to a file using link(),
symlink(), unlink(), and remove()

● Changing ownership of a file using chown(), and fchown()
● Changing file mode creation mask and permissions on a file using
umask(), chmod(), and fchmod()

● Checking permissions on a file using access()
● I/O redirection using dup(), and dup2()
● What all we can do with fcntl()

3Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Repositioning CFO of an opened file

4Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

off_t lseek(int fd,off_t offset,int whence);

lseek() System call

● For each open file, the kernel records a file offset, also called current file
offset (cfo), which is there in the SWFT. This is the location in the file at
which the next read() or write() will commence. The file offset is
expressed as an ordinal byte position relative to the start of the file. The first
byte of the file is at offset 0

● The file offset is set to point to the start of the file when the file is opened
(unless the O_APPEND option is specified) and is automatically adjusted
by each subsequent call to read() or write() so that it points to the
next byte of the file after the byte(s) just read or written. Thus, successive
read() and write() calls progress sequentially through a file

● The lseek() system call adjusts the file offset of the open file referred to
by the file descriptor fd, according to the values specified in offset and
whence. On success, returns the resulting offset location and -1 on failure

5Punjab University College Of Information And Technology (PUCIT)

Interpreting whence argument of lseek()
Instructor:Arif Butt

0 1 n-2 n-1 n n+1 . . .

SEEK_SET SEEK_CUR SEEK_END

whence value

File containing n bytes of data Hole past EOF

off_t lseek(int fd,off_t offset,int whence);

Examples
off_t posn;
posn = lseek(fd, 54, SEEK_SET);
posn = lseek(fd, +/-54, SEEK_CUR);
posn = lseek(fd, +/-54, SEEK_END);

6Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● The directive “whence” can take following five values:

WHENCE Description

SEEK_SET 0 The cfo is set offset bytes from the beginning of the file

SEEK_CUR 1 The cfo is set offset bytes from current value of cfo

SEEK_END 2 The cfo is set offset bytes from the end of the file

SEEK_HOLE 3 The cfo is set to start of the next hole greater than or equal to offset

SEEK_DATA 4 The cfo is set to start of the next non-hole (i.e., data region) greater than
or equal to offset

lseek() System call (cont...)

7Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Examples:
lseek1.c, lseek2.c, lseek3.c

8Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

 Misc File Related System Calls

9Punjab University College Of Information And Technology (PUCIT)

rename() Function
Instructor:Arif Butt

int rename(const char*oldpath,const char* newpath);

● A programmer can rename a file or a directory with the
rename() library function

● A sample code snippet that renames a file named file1.txt to
file2.txt in the present working directory is shown below:

if(rename(“file1”,”file2”) == -1)
perror(“rename(1)”);

10Punjab University College Of Information And Technology (PUCIT)

remove() and unlink()
Instructor:Arif Butt

int remove(const char *pathname);
int unlink(const char* pathname);

● Remove is a library call that deletes a name from file system. It calls
unlink() for files and rmdir() for directories

● However, if any process has this file open currently, the file won't be
actually erased until the last process holding it open closes it. Until
then it will be removed from the directory (i.e., ls won't show it), but
not from disk

● When a file is deleted, the OS Kernel performs following tasks:
i. Frees the inode number associated with that file
ii. Frees all the data blocks associated with that file and add them to

the list of free blocks
iii. Delete the entry from the directory containing that file

● The metadata of the file is still there in the inode block and the data of
the file in its data blocks (U just need to know how to access those
blocks)

11Punjab University College Of Information And Technology (PUCIT)

Symlink and link Function
Instructor:Arif Butt

int symlink(const char* oldpath, const char* newpath);
int link(const char* oldpath, const char* newpath);

if(symlink(“/tmp/file1”,”/home/arif/slinktofile1”) == -1)
{ perror(“symlink”); exit(1);}

if(link(“/tmp/file1”,”/home/arif/hlinktofile1”) == -1)
{ perror(“link”); exit(1); }

Review OS with Linux Video Lec 21 for detailed concepts of Links

● The link() and symlink() functions are used to create a
hard link and a soft link to a file

● Following sample code snippets show the usage of these library
functions:

12Punjab University College Of Information And Technology(PUCIT)

chown ,fchown and lchown Function
Instructor:Arif Butt

int chown(const char *pathname, uid_t owner, gid_t group);
int fchown(int fd, uid_t owner, gid_t group);
int lchown(const char *linkname, uid_t owner,gid_t group);

● These system calls change the owner and group of the file
specified by path or file descriptor

● If owner or group is specified as -1, then that ID is not changed
● Only a process with super user privileges can use these functions

to change any file user ID and group ID
● However, if a process effective user ID matches a file user ID and

its effective group ID, the process can change the file group ID
only (Will discuss this later)

● lchown() is like chown(), but does not dereference symbolic
links

13Punjab University College Of Information And Technology(PUCIT)

chmod and fchmod System Call

● These two functions allow us to change the file access permissions
for an existing file

● The chmod function operates on the specified file, whereas the
fchmod function operates on a file that has already been opened
using its file descriptor

● The mode is the same as discussed in the flags argument of open()

● Following code snippet will give the owner read and write
permissions to the file and deny access to all other users

Instructor:Arif Butt

int chmod(const char *pathname, mode_t mode);
int fchmod(int fd, mode_t mode);

if(chmod(“file.txt”,S_IRUSR|S_IWUSR) == -1){

 perror(“chmod”); exit(1);}

14Punjab University College Of Information And Technology(PUCIT)

umask Function

● The umask() function sets the file mode creation “mask” for
the process and returns the previous value

● Remember the mask value of a process is the same as that of its
creating shell, i.e. its parent. (mask value is inherited after fork)

● The file mode creation mask is used whenever the process
creates a new file or a new directory

Review OS with Linux Video Lec 22 and 23

Instructor:Arif Butt

mode_t umask(mode_t mask);

umask(0077);
int fd = open("myfile.txt",O_CREAT|O_RDWR,0633);

15Punjab University College Of Information And Technology(PUCIT)

access() System Call

● The access() system call determines whether the calling process has
access permission to a file or not and it can also check for file existence
as well

● The mode argument is a bit mask consisting of one or more of the
permission constants shown in the table below:

● If a process has all the specified permissions the return value is 0,
otherwise the return value is -1 & sets errno to EACCES

● The open() system call performs its access tests based on the EUID
and EGID, while the access() system call bases its tests on the real
UID & GID

Instructor:Arif Butt

int access(const char *pathname, int mode);

Mode Description

R_OK Test for read permission

W_OK Test for write permission

X_OK Test for execute permission

F_OK Test for existence of file

16Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Examples:
access.c, truncate.c, umask1.c,

umask2.c

17Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

I/O Redirection using dup()
Review OS with Linux Video Lec 8

18Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● The dup() call takes oldfd, an open file descriptor, and returns a
new descriptor that refers to the same open file description

● The old and the new descriptor both point to the same entry in the
SWFT. After a successful return from these function , old and new fd's
can be used interchangeably

● The new descriptor is guaranteed to be the lowest unused file
descriptor.

int dup(int oldfd);

dup() System call

Fd flags File ptr

PPFDT

0

1

2

3

4

5

stdin
stdout

stderr
file1.txt

Example: dup.c

19Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Facts about I/O Redirection on the Shell

Fd flags File ptr

PPFDT

0

1

2

3

4

OPENMAX-1

5

stdin

stdout

$ cat

stderr

20Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Facts about I/O Redirection on the Shell

Fd flags File ptr

PPFDT

0

1

2

3

4

OPENMAX-1

5

f1.txt

f2.txt

$ cat 0< f1.txt 1> f2.txt 2>&1

Example: listargs.c

100$ Q:
How many command line arguments are passed to the cat program?

﻿$./a.out 0< /etc/passwd 1> /dev/tty 2> errfile

21Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● We know that dup() call guarantees that the new descriptor returned
is the lowest unused file descriptor

● If we run the following LOCs, the open call will return 3, the dup
call will return the lowest unused descriptor which will be zero. So
finally descriptor zero points to the opened file instead of stdin

fd = open(...);

close(0);

newfd = dup(fd);
● To make the above code simpler, and to ensure we always get the file

descriptor we want, we can use dup2()

int dup(int oldfd);

dup() System call

22Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● The dup2() system call makes a duplicate of the file descriptor given
in oldfd using the descriptor number supplied in newfd

● If the file descriptor specified in newfd is already open, dup2()
closes it first

● We can simplify the preceding calls to close(0) and dup(fd) on
previous slide to the following:
dup2(fd, 0);

● A successful dup2() call returns the number of the duplicate
descriptor (i.e., the value passed in newfd)

● If oldfd is a valid file descriptor, and oldfd and newfd have the
same value, then dup2() does nothing—newfd is not closed, and
dup2() returns the newfd

int dup2(int oldfd, int newfd);

dup2() System call

23Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● The dup3() system call performs the same task as dup2(), but adds an
additional argument, flags, that is a bit mask that modifies the behavior of
the system call

● At the time of this writing, dup3() supports one flag, O_CLOEXEC,
which causes the kernel to enable the close-on-exec flag (FD_CLOEXEC)
for the new file descriptor

● The dup3() system call is new in Linux 2.6.27, and is Linux-specific

int dup3(int oldfd, int newfd, int flags);

dup3() System call

24Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Method 1: close-open (stdinredir1.c)
close(0);
fd = open("/etc/passwd", O_RDONLY);

Method 2: open-close-dup-close (stdinredir2.c)
fd = open("/etc/passwd", O_RDONLY);
close(0);
newfd = dup(fd);
close(fd);

Method 3: open-dup2-close (stdinredir3.c)
fd = open("/etc/passwd", O_RDONLY);
newfd = dup2(fd, 0);
close(fd);

Examples: Input Redirection

25Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

fcntl() System Call

26Punjab University College Of Information And Technology (PUCIT)

What fcntl() can do?
Instructor:Arif Butt

Fd flags File ptr

PPFDT

0

1

2

3

4

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13

int fcntl(int fd,int cmd, long arg);

27Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

The fcntl() system call can be used instead of dup() to return a
duplicate file descriptor of an already opened file. The second argument
passed to fcntl() for this purpose is F_DUPFD. It will return the
lowest-numbered available file descriptor greater than or equal to the
third argument

int fd = open("/etc/passwd", O_RDONLY);
printf("The first file descriptor is %d\n",fd);
int rv = fcntl(fd, F_DUPFD, 54);
printf("Duplicate file descriptor is %d\n",rv);

fcntl() (Duplicate file descriptor)
int fcntl(int fd,int cmd, long arg);

Example: fcntl_dup.c

28Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

The fcntl() system call can be used to get the file status flags of an
already opened file from SWFT. For example suppose you have opened a
file and want to check the file access mode flags (O_RDONLY,
O_WRONLY, O_RDWR). The second argument passed to fcntl() for
this purpose is F_GETFL and the third argument is ignored. It will return
all the file status flags in an integer variable which when bitwise anded
with the O_ACCMODE constant will tell you about the permissions

﻿int fd = open(“file”, O_RDONLY);
int flags = fcntl(fd, F_GETFL, 0);
flags = flags & O_ACCMODE;
﻿if (flags == O_RDONLY) printf("read only\n");

fcntl() (Get file status flags)

Example: fcntl_checkpmns.c

int fcntl(int fd,int cmd, long arg);

29Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

O_APPEND flag is used to ensure that each call to write() implicitly
includes an lseek to the end of the file. Moreover, the kernel combines
lseek() and write() into an atomic operation. Suppose you forgot to
set this flag while making the open() call. Now if you have already
opened a file and want to set O_APPEND flag, you can do that with
fcntl() system call with a simple three-step procedure:

int flags = fcntl(fd, F_GETFL, 0); //get settings
flags = flags | O_APPEND; //modify settings
fcntl(fd, F_SETFL, flags); //set them back

fcntl() (Set file operating mode flags)
int fcntl(int fd,int cmd, long arg);

30Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

O_SYNC flag is used to turn off disk buffering. It tells the kernel that call
to write() should return only when the bytes are written to the actual
hardware rather than the default action of returning when the bytes are
copied to a kernel buffer. However, setting O_SYNC eliminates all the
efficiency kernel buffering provides. Suppose you want to set this flag, but
forgot to set it while making the open() call. Now if you have already
opened a file and want to turn off Kernel disk buffering, you can do that
with fcntl() system call with a simple three-step procedure:

int flags = fcntl(fd, F_GETFL, 0); //get settings
flags = flags | O_SYNC; //modify settings
fcntl(fd, F_SETFL, flags); //set them back

int fcntl(int fd,int cmd, long arg);

fcntl() (Set file operating mode flags)

31Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Types of Locking Mechanisms:
● Advisory locks: Kernel maintains knowledge of all files that have been

locked by a process. But it does not prevent a process from modifying that
file. The other process can, however, check before modifying that the file is
locked by some other process. Thus advisory locks require proper
coordination between the processes

● Mandatory Locks: are strict implications, in which the kernel checks every
read and write request to verify that the operation does not interfere with a
lock held by a process. Locking in most UNIX machines is by default
advisory. Mandatory locks are also supported but it needs special
configuration

File / Record Locking

Types of Advisory Locks:
● Read Locks/Shared Locks: Locks in which you can read, but if you want to

write you’ll have to wait for everyone to finish reading. Multiple read
locks can co-exist

● Write Locks/Exclusive Locks: Locks in which there is a single writer.
Everyone else has to wait for doing anything else (reading or writing). Only
one write lock can exist at a time

32Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● The fcntl() system call can be used for achieving read/write locks
on a complete file or part of a file

● To lock a file the second argument to fcntl() should be F_SETLK
for a non-blocking call, or F_SETLKW for a blocking call

● The third argument to fcntl() is a pointer to a variable of type
struct flock (See its details in man page)

● Locks acquired using fcntl() are not inherited across fork(). But
are preserved across execve()

fcntl() (File/Record Locking)
int fcntl(int fd,int cmd, struct flock* lock);

Example: fcntl_lock.c

33Punjab University College Of Information And Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

