
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Video Lecture # 14
Design and Code of 

UNIX ls utility

Course: SYSTEM PROGRAMMING

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab



2Punjab University College Of Information Technology (PUCIT)

Agenda
Instructor:Arif Butt

● Directory management
● What does ls do?
● How does ls do it?
● Coding a basic version of ls command
● Retrieving file attributes from its inode block
● Retrieving owner and group name of file
● Retrieving timestamps of file
● Determining file type and access permissions on file
● Writing version of ls that displays a long listing of directory

contents
● Assignment versions
● Assignment: Design and code of find and grep utilities



3Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Directory Management Calls



4Punjab University College Of Information And Technology(PUCIT)

mkdir and rmdir Function
Instructor:Arif Butt

int mkdir(const char *pathname, mode_t mode);
int rmdir(const char *pathname);

● mkdir function creates a new empty directory with two entries . & ..
● Permissions on the created directory are:
mode & ~umask & 0777

● The new directory will be owned by the effective UserID of the process
● The rmdir function is used to delete an empty directory. If the link count of

the directory becomes 0 with this call, and if no other process has the directory
open, then the space occupied by the directory is freed

● If one or more processes have the directory open when the link count reaches 0
then: 

● The last link is removed
● The . and .. entries are removed before the function return
● No new files can be created in this directory
● The directory is freed when the last process closes it



5Punjab University College Of Information And Technology(PUCIT)

opendir() Function
Instructor:Arif Butt

DIR *opendir(const char* dirpath);
int closedir(DIR *dirp);

● The opendir()  function opens the directory specified by dirpath  and
returns a pointer to a structure of type DIR, which is used to refer that
directory in later calls. Upon return from opendir(), the directory stream
is positioned at the first entry in the directory list

● The closedir()  function closes the directory stream associated with
dirp

● Directories can be read by anyone who has access permission to read the
directory. But only the kernel can write to a directory, so the write
permission bits and execute permission bits for a directory determine if we
can create new files in the directory and remove files from the directory



6Punjab University College Of Information And Technology(PUCIT)

readdir() Function
Instructor:Arif Butt

struct dirent *readdir(DIR *dirp);
● The readdir()  function is passed the DIR*  which is returned by
opendir().  Every time it is called it returns an entry from the directory
stream referred to by dirp. The return value is a pointer to a structure of
type dirent, containing the following information about the entry (it may
vary from OS to OS):
struct dirent {

   ino_t d_ino; /* File i-node number */
   char d_name[]; /* Null-terminated name of file */

  };
● This structure is overwritten on each call to readdir()
● The filenames returned by readdir() are not in sorted order, but rather in

the order in which they happen to occur in the directory (this depends on the
order in which the file system adds files to the directory and how it fills gaps
in the directory list after files are removed). (The command ls –f lists
files in the same unsorted order that they would be retrieved by readdir()



7Punjab University College Of Information And Technology(PUCIT)

readdir() Function (cont...)
Instructor:Arif Butt

● On end-of-directory or error, readdir() returns NULL, in the latter case
setting errno to indicate the error. To distinguish these two cases, we can
write the following:

    errno = 0;
  struct dirent * entry = readdir(dp);
  If ((entry == NULL) && (errno != 0))
           /* Handle error */
     else
          /* We reached end-of-directory */
  }

● If the contents of a directory change while a program is scanning it with
readdir(), the program might not see the changes. SUSv3 explicitly
notes that it is unspecified whether readdir() will return a filename that
has been added to or removed from the directory since the last call to
opendir(). All filenames that have been neither added nor removed since
the last such call are guaranteed to be returned



8Punjab University College Of Information And Technology(PUCIT)

Misc Functions
Instructor:Arif Butt

int chdir(const char *pathname);
void rewinddir(DIR *dirp);
off_t telldir(DIR *dirp);
void seekdir(DIR *dirp, long loc);

● The chdir()  function is used to change the current working
directory of the calling process, and pathname is the directory where
the search for all relative pathname starts

● The rewinddir()  function moves the directory stream dirp  back
to the beginning, so that the next call to readdir() will begin again
with the first file in the directory

● The telldir()  function returns the current location associated with the
directory stream dirp 

● The seekdir()  function sets the location in the directory stream from
which the next readdir()  call will start. The loc  argument should be a
value returned by a previous call to telldir()



9Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Example: myreaddir.c



10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

UNIX ls utility



11Punjab University College Of Information Technology (PUCIT)

What does ls do?
Instructor:Arif Butt

The default behavior of ls (w/o any arguments/options) is to list contents
of present working directory after sorting them in alphabetic order and
displaying them on stdout in columns (list down and then across). How
much columns and rows depends on the maximum number of file names
that can be managed in a single row. Important options:
● -t:   Sort by modification time (newer to old)
● -S:   Sort by size (bigger to smaller)
● -1:   Display single entry per line
● -a:   Show hidden files as well
● -A:   Show hidden files less . and ..
● -F:   Show visual classification of files with names
● -i:   Show inode numbers with names
● -R:   Recursively display contents of sub directories also
● -l:   Long listing, sorted in alphabetic order by file name, display mtime
● -n:   Long listing, but show UID/GID instead of owner/group names
● -ld: Long listing of directory and not its contents
● -lu: Long listing, sorted in alphabetic order by file name, display atime
● -lc: Long listing, sorted in alphabetic order by file name, display ctime



12Punjab University College Of Information Technology (PUCIT)

How does ls do it?
Instructor:Arif Butt

1. Open the directory

2. Read entry till end of directory

3. Display entry contents

4. Go to step 2

5. Close directory



13Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

lsv0.c
Receives exactly one directory name via command line
argument and display names of files and subdirectories in
the order as they appear in the directory



14Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

lsv1.c
This version adds a feature and our ls  command works
on multiple directory names passed via command line
arguments. If no argument is passed display the contents
of pwd



15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

lsv2.c
This version adds a feature that does not display the
hidden files in the directory



16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

lsv3.c
This version adds a feature that will display every file in
the directory in long listing



17Punjab University College Of Information Technology (PUCIT)

What does ls -l do?
Instructor:Arif Butt

The long listing of ls  command displays seven columns for each
file:

1. File Type (-,d,l,p,c,b,s) and Permissions (rwxrwxrwx)

2. Link Count

3. User

4. Group

5. Size

6. Time

7. Name of file

These attributes of a file (less its name) are not stored
in dirent structure



18Punjab University College Of Information And Technology(PUCIT)

stat() System call
Instructor:Arif Butt

int stat(const *char pathname, struct stat *buff);
int lstat(const *char linkname, struct stat *buff);

● These functions can be used to access the file attributes stored in its
inode. To stat a file no permissions are required on the file itself,
however, execute (search) permission is required on all of the
directories in pathname that leads to the file

● stat() stats the file pointed by path and fills in buff
● lstat() is similar to stat, except if path is a symbolic link, then

the link itself is stated , not the file it refers to
● On success returns 0 and on error returns -1 and set errno
● On success, populate the stat structure as mentioned on next slide



19Punjab University College Of Information And Technology(PUCIT)

stat() system call (cont ...)
Instructor:Arif Butt

struct stat{

ino_t    st_ino;   //inode number

mode_t   st_mode;  //file type & protection

nlink_t  st_nlink; //number of hard links

uid_t    st_uid;   //user ID of owner

gid_t    st_gid;   //group ID of owner

off_t    st_size;  //total size in bytes

time_t   st_atime; //time of last access

time_t   st_mtime; //time of last data modification

time_t   st_ctime; //time of last status change

};

Some important members of the stat structure that of our interest right
now are shown below:



20Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Example: fileinfo.c
This program receives a file name via command line
argument and display its attributes on screen



21Punjab University College Of Information And Technology(PUCIT)

getpwuid() System call
Instructor:Arif Butt

struct passwd* getpwuid(uid_t uid);
● The getpwuid() function returns a pointer to a structure containing

the broken-out fields of the record in the password database
(/etc/passwd) that matches the uid

● The passwd structure is defined in <pwd.h> as follows:

struct passwd{
char*    pw_name; 
char*    pw_passwd;
uid_t    pw_uid; 
gid_t    pw_gid;  
char*    pw_gecos;
char*    pw_dir;  
char*    pw_shell;  

};



22Punjab University College Of Information And Technology(PUCIT)

stat() System call
Instructor:Arif Butt

struct group* getgrgid(gid_t gid);

● The getgrgid() function returns a pointer to a structure containing
the broken-out fields of the record in the group database
(/etc/group) that matches the gid

● The group structure is defined in <grp.h> as follows:

struct group{
char*   gr_name; 
char*   gr_passwd;
gid_t   gr_gid; 
char*   gr_gmem;  

};



23Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Examples: uidtouname.c, gidtogname.c
These programs receives a UID/GID via command line
argument and display the corresponding user/group name



24

Instructor:Arif Butt

Real / Calender Time 

Punjab University College Of Information Technology (PUCIT)

Review OS with LinuxVideo Lec 27 on Time Management



25

Real Time
Instructor:Arif Butt

● Obtaining calender time is useful to programs, e.g, to update timestamps of
files

● Regardless of geographic location, UNIX system represent time internally as
measure of seconds since the epoch; i.e since midnight 00:00, Jan 1 , 1970,
Universal Time (UTC, previously known as Greenwich Mean Time GMT)

● On 32-bit Linux system, time_t is a signed integer that is used to store the
number of seconds passed since the UNIX epoch. It can represent dates in
the range of
13 Dec 1901 20:45:52     to      19 Jan 2038 03:14:07

● 2038 Problem:  A 31 bits variable can contain a maximum number of
2,147,483,646  seconds. Any number beyond this limit i.e 
2,147,483,647  will wrap around & will be stored as -ve number i.e
-2,147,483,648. Linux will interpret this as 13 Dec 1901 20:45:52

● To display number of seconds passed since UNIX epoch
$date +%S
1,365,147,372

Punjab University College Of Information Technology (PUCIT)



26

time() and ctime() Functions
Instructor:Arif Butt

time_t time(time_t *t);
char * ctime(const time_t* timep)

Punjab University College Of Information Technology (PUCIT)

● The time()  function is used to get the time since UNIX Epoch in
seconds. If the argument is non-null, the return value is also stored in
the memory pointed to by t

● The ctime() function takes the number of seconds and return a null
terminated string of the form Mon Mar 12 10:10:10 2018



27

Relationship of Time Functions
Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)



28Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Example: 
transformtime.c



29Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Determining File Type and Permissions

Review OS with LinuxVideo Lec 22 and 23



30Punjab University College Of Information And Technology(PUCIT)

Understanding st_mode member of stat()
Instructor:Arif Butt

● The 16 bit st_mode  member of struct stat  that we achieved
using stat(2) system call contains information about file type and
permissions as shown above

● The codes for the seven file types are mentioned in the table below:

File Type (4)
1000

Special Permissions (3)
000

User (3)
110

Group (3)
100

Others (3)
000

Decimal Binary Octal File Type

1 0001 01 p

2 0010 02 c

4 0100 04 d

6 0110 06 b

8 1000 10 -

10 1010 12 l

12 1100 14 s



31Punjab University College Of Information And Technology(PUCIT)

Determining the File Type
Instructor:Arif Butt

if ((buf.st_mode &  0170000) == 0010000) 

printf("Named pipe\n");

else if ((buf.st_mode &  0170000) == 0020000) 

printf("Character Special File\n");

● You can determine the file type by creating a mask by making all the
bits zero other than the one of your interest. So to determine the file
type you set the four bits of file type and zero out the rest of the bits

● Then you perform a bitwise &  of the st_mode  value with the mask,
and compare the output with the file codes to determine file type. A
sample code snippet is shown:

File Type (4)
1000

Special Permissions (3)
000

User (3)
110

Group (3)
100

Others (3)
000



32Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Example: 
filetype.c



33Punjab University College Of Information And Technology(PUCIT)

Determining the File Permissions
Instructor:Arif Butt

● You can determine the file permissions by creating a mask by making
all the bits zero other than the one of your interest. So to determine the
file permissions for the owner, you set the corresponding three bits of
user permissions and zero out the rest of the bits

● Then you perform a bitwise &  of the st_mode  value with the mask,
and check if the specific bit for that permission is set or not. If it is set
that means the permission is ON otherwise it is OFF. A sample code
snippet is shown:

File Type (4)
1000

Special Permissions (3)
000

User (3)
110

Group (3)
100

Others (3)
000

if((buf.st_mode & 0000400) == 0000400)

printf("Owner has read permission\n");

if((buf.st_mode & 0000200) == 0000200)

printf("Owner has write permission\n");

if((buf.st_mode & 0000100) == 0000100)

printf("Owner has execute permission\n");



34Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Example: 
filepermissions.c



35Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

lsv3.c
This version adds a feature that will display every file in
the directory in long listing



36Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

lsv4.c
This version adds a feature to display file names in
columns (list down and then across). Number of columns
depends on the length of the names and total number of
names that come in a single line. Number of rows depends
on the total number of files in that directory



37Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

lsv5.c
Add a feature to display the file names after a alphabetic
sort. Read all the names in an array, then use qsort(3) 
to sort the array and then display on screen



38Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

lsv6.c
Add a feature that displays colorful filenames, i.e.,
directories in blue, executables in green, tarballs in red,
softlinks in pink, character and block special files in
reverse video



39Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

lsv7.c
Add a feature that implement the -R  option to standard 
ls, i.e., recursively show contents of subdirectories as well



40Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

myfinalls.c
This is the final version will incorporate all the features
with appropriate option characters as close as possible to
the standard ls utility



41Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

myfind.c



42Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

mygrep.c



43Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s . . . .


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

