
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Video Lecture # 19
Process Management

Part - III

Course: SYSTEM PROGRAMMING

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information Technology (PUCIT)

Agenda
Instructor:Arif Butt

● Overwriting process address space using exec()
● Effect of fork and exec on process attributes
● Writing your own system() library function
● Job Control
● Process groups
● Process sessions
● Terminals

3Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Program Execution
exec() Family

4Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● A process may overwrite itself with another executable image.
When a process calls one of the six exec() functions, it is
completely replaced by the new program, and the new program
starts executing its main function

● There are five library functions of exec family and all are
layered on top of the execve() system call. Each of these
functions provides a different interface to the same functionality

● There is no return after a successful exec call. ﻿The exec()
functions return only if an error has occurred. The return value
is -1, and errno is set to indicate the error

exec() Functions

5Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● The first argument to this family of exec() calls, is the name of the
executable, which on success will overwrite the address space of the calling
process with a new program from the secondary storage

● The l after the exec means that command line arguments to the new
program will be passed as a comma separated list of strings with a '\0'
character at the end

● The p stands for path. It means that the program specified as the first
argument should be searched in all directories listed in the PATH variable.
However, using absolute path to program is more secure than relying on
PATH variable, which can be more easily altered by malicious users

● The e stands for environment. It means that after the command line
arguments, the program should pass an array of pointers to null terminated
strings, specifying the new environment of the program to be executed.
Otherwise, the caller environment will be used

exec() Functions (cont...)
int execl (const char *pathname, const char* arg0,...,(char*)0);
int execlp (const char *filename, const char* arg0,...,(char*)0);
int execle (const char* pathname, const char* arg0,...,(char*)0,
 char* const envp[]);

6Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

exec() Functions (cont...)
int execv (const char *pathname, char *const argv[]);
int execvp (const char *filename, char* const argv[]);
int execve (const char* pathname,char* const argv[],

char* const envp[]);

● The first argument to this family of exec() calls, is the name of the
executable, which on success will overwrite the address space of the calling
program with a new program

● The v after the exec means that command line arguments to these functions
will be passed as an array of pointers to null terminated strings

● The p stands for path. It means that the program specified as the first
argument should be searched in all directories listed in the PATH variable.
However, using absolute path to program is more secure than relying on
PATH variable, which can be more easily altered by malicious users

● The e stands for environment. It means that after the command line
arguments, the program should pass an array of pointers to null terminated
strings, specifying the new environment of the program to be executed.
Otherwise, the caller environment will be used

7Punjab University College Of Information Technology (PUCIT)

exec Functions (cont...)
Instructor:Arif Butt

● All successful exec() functions never return. In case it returns, it
always return -1 , but we need not to compare this value. The fact that
it returned informs us that an error occurred. We can use errno to
determine the cause of failure

● Reasons of failure can be:

EACCES The specified program is not a regular file, or doesn’t
have execute permissions enabled or one of the directory
components of pathname is not search able

ENOENT The specified program does not exist
ENOEXEC The specified program is not in a recognizable executable

format
ETXTBSY The specified program is open for writing by another

process
E2BIG The total space required by the argument list &

environment list exceeds the allowed maximum

8Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Use of exec()Functions
Proof of concept

exec1.c to exec4.c

9Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Process Attributes
Inherited/Preserved after
fork() / exec()

10Punjab University College Of Information Technology (PUCIT)

Attributes Inherited after fork() & exec()
Instructor:Arif Butt

Process IDs fork() exec() Description
PID No Preserved

PPID No Preserved

PGID Inherited Preserved

SID Inherited Preserved

Real IDs Inherited Preserved

Effective and Saved SUIDs Inherited Preserved Can be changed

Supplementary Group IDs Inherited Preserved

Process Address Space fork() exec() Description
Text Segment Shared No

Stack Segment Inherited No

Data and Heap Segment Inherited No

Environment Variables Inherited -- Depends on type of exec call

Memory Mappings Inherited No

Memory Locks No No

11Punjab University College Of Information Technology (PUCIT)

Attributes Inherited after fork() & exec()
Instructor:Arif Butt

Files and Directories fork() exec() Description
PPFDT Inherited Preserved PPFDT is inherited after exec unless close-on-exec flag is set

Close-on-exec Flag Inherited Preserved

File offsets Shared Preserved

Open file status flags Shared Preserved

Directory streams Inherited No

Present working directory Inherited Preserved

File mode creation mask Inherited Preserved

Scheduling, Resources fork() exec() Description
Nice value Inherited Preserved

Priority Inherited Preserved

Scheduling policy Inherited Preserved

Resource limits Inherited Preserved

Resource usage No Preserved

CPU times No Preserved

Exit Handlers Inherited No

12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Process Attributes Inheritance
Proof of concept

exit_fork.c & exit_exec.c

13

Instructor:Arif Butt

int system(const char* command);
● It executes a command specified in cmd by calling /bin/bash -c

command and returns after the command has been completed

● Return -1 on error and the return status of the cmd other wise

● Main cost of system() is inefficiency. Executing a command using
system() requires the creation of at least two processes

● One for the shell

● Other for the command(s) it executes

Punjab University College Of Information Technology (PUCIT)

Executing a shell command using system()

14Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Executing shell command using
 system()

Proof of concept
system1.c to system3.c

15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● The -c option to /bin/bash command provides an easy way
to execute a string containing arbitrary shell command:

 $ /bin/bash -c “ls”

●﻿If there are arguments after the string, they are assigned to the
positional parameters, starting with $0

● Thus to implement system(), we need to use fork() to create
a child that does an execl() to the bash program

 execl(“/bin/bash”, “mybash”, “-c”, command, '\0');

Implementing system()using exec()

16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Writing your own system()
Proof of concept

system4.c

17Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Process Groups, Sessions
and Controlling Terminals

18Punjab University College Of Information Technology (PUCIT)

Illustration of Job Control States
Instructor:Arif Butt

Command

Command &

Terminated

Suspended

1. <Ctrl+c> (SIGINT)

2. <Ctrl+\> (SIGQUIT)

Running in
foreground

Running in
background bg (SIGCONT)

kill(SIGSTOP)

Stopped in
background

f
g

(
S
I
G
C
O
N
T
)

k
i
l
l

fg
 (
SI
GC
ON
T)

<Ctrl+z> (SIGTSTP)

ki
ll

Source: The Linux Programming Interface

19Punjab University College Of Information Technology (PUCIT)

Process Group, Session & Terminal
Instructor:Arif Butt

Process Group: Process group is a set of one or more processes sharing
the same PGID. Every process group has a Process Group Leader, which
is the process that creates the group and whose PID becomes the PGID of
that group. A child process inherits its parent’s PGID. Life time of a
Process Group starts when the leader creates the group and ends when the
last member process leave the group

Session: A session is a collection of one or more process groups. A
process's session membership is determined by its SID. Every session has
a session leader, which is the process that creates a new session and whose
PID becomes the SID. At any point in time, one of the process groups in a
session is the foreground process group & others are background process
groups

Terminal: All processes in a session shares a single controlling terminal,
which is established when a session leader first opens a terminal device. A
session leader is the controlling process for the terminal. If a terminal
disconnect occurs , the kernel sends the session leader SIGHUP signal

20Punjab University College Of Information Technology (PUCIT)

Relationships between PGs, Session, CT
Instructor:Arif Butt

echo $$
400
find / 2> /dev/null | wc -l &
[1] 659
sort < longlist | uniq -c

Source: The Linux Programming Interface

21Punjab University College Of Information Technology (PUCIT)

Retrieving and Changing Process Group
Instructor:Arif Butt

● getpgid() returns the process group ID of the process specified by
pid. If pid is zero, the process ID of the current process is used

● setpgid() sets the PGID of the process specified by pid to pgid.
If 1st argument pid is zero, the PID of the calling process is used. If
2nd argument pgid is zero, the PID of the process specified by pid
is used. If both arguments are zero, then the calling process is made the
group leader

● If setpgid() is used to move a process from one process group
to another, both process groups must be part of the same session. In
this case, the pgid specifies an existing process group to be joined
and the session ID of that group must match the session ID of the
joining process

pid_t getpgid(pid_t pid);
int setpgid(pid_t pid, pid_t pgid);

22Punjab University College Of Information Technology (PUCIT)

Retrieving and Changing Session
Instructor:Arif Butt

● getsid() returns the session ID of the process, specified by pid. If
pid is zero, the session ID of the calling process is returned

● ﻿setsid() creates a new session if the calling process is not a
process group leader. The calling process is made the leader of the
new session (i.e., its SID is made the same as its PID). The calling
process also becomes the process group leader of a new process group
in the session (i.e., its PGID is made the same as its PID). The calling
process will be the only process in the new process group and in the
new session

pid_t getsid(pid_t pid);
pid_t setsid();

23Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

