
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Video Lecture # 24
Overview of UNIX IPC

&
Signals on the Shell

Course: SYSTEM PROGRAMMING

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● Ways to Share Information Among UNIX Processes

● Taxonomy of InterProcess Communication

● Communication

● Synchronization

● Signals

● Persistence of IPC Objects

● Overview of Signals Concepts

● Signal Handling on BASH Shell

● Important Signals and their disposition

● Ignoring signals and writing signal handlers (on the shell)

3Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Introduction to UNIX IPC

4Punjab University College Of Information Technology (PUCIT)

Application Design
Option 1
One huge monolithic program that does every thing

Option 2
Multi_threaded programs

Option 3
Multiple programs using fork() that communicate with each
other using some form of Inter Process Communication (IPC)

Instructor:Arif Butt

5Punjab University College Of Information Technology (PUCIT)

Ways to Share Information b/w UNIX Processes
Instructor:Arif Butt

Process Process Process Process Process Process

Disk

Shared
memory

Kernel Buffer

Processes can access shared
memory without involvement
of kernel at all

User
area

Kernel
area

6Punjab University College Of Information Technology (PUCIT)

Taxonomy of IPC
Instructor:Arif Butt

Categories of IPC

Communication SignalsSynchronization

7Punjab University College Of Information Technology (PUCIT)

Taxonomy of IPC
Instructor:Arif Butt

Communication

Data Transfer Shared Memory

Byte Stream Message Passing

Pipes

FIFOS

Stream Sockets

SysV MQ

POSIX MQ

Datagram Sockets

SysV SM

POSIX SM

Memory Mappings

Anonymous Mapping

Memory Mapped Files

8Punjab University College Of Information Technology (PUCIT)

Taxonomy of IPC (cont...)
Instructor:Arif Butt

Synchronization

Semaphores File Locks

SysV Semaphores

POSIX Semaphores

File Locks

Record Locks

Named

Unnamed

For Threads

Mutex

Condition Variables

9Punjab University College Of Information Technology (PUCIT)

Taxonomy of IPC (cont...)
Instructor:Arif Butt

Signals

Standard Signals Real Time Signals

10Punjab University College Of Information Technology (PUCIT)

Persistence of IPC objects
Instructor:Arif Butt

Process
Persistence

Kernel
Persistence

File system
Persistence

● Exists as long as it is held open by a process
● Pipes and FIFOs
● TCP, UDP sockets
● Mutex, condition variables, read write locks
● POSIX memory based semaphores

● Exists until kernel reboots or IPC objects is explicitly
deleted

● Message Queues, semaphores & shared memory are at
least kernel persistent

● Exists until IPC objects is explicitly deleted, or file
system crashes

● Message queues, semaphores & shared memory can be
file system persistent if implemented using mapped
files

11Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Overview of Signals

12Punjab University College Of Information Technology (PUCIT)

Introduction to Signals
● Suppose a program is running in a while(1) loop and you press
Ctrl+C key. The program dies. How does this happens?

● User presses Ctrl+C

● The tty driver receives character, which matches intr

● The tty driver calls signal system

● The signal system sends SIGINT(2) to the process

● Process receives SIGINT(2)
● Process dies

● Actually by pressing <ctrl+c>, you ask the kernel to send SIGINT
to the currently running foreground process. To change the key
combination you can use stty(1) or tcsetattr(2) to replace
the current intr control character with some other key combination

Instructor:Arif Butt

13Punjab University College Of Information Technology (PUCIT)

● Signal is a software interrupt delivered to a process by OS because:
● The process did something (SIGFPE (8), SIGSEGV (11), SIGILL (4))
● The user did something (SIGINT (2), SIGQUIT (3), SIGTSTP (20))
● One process wants to tell another process something (SIGCHILD (17))

● Signals are usually used by OS to notify processes that some event
has occurred, without these processes needing to poll for the event

● Whenever a process receives a signal, it is interrupted from whatever it
is doing and forced to execute a piece of code called signal handler.
When the signal handler function returns, the process continues
execution as if this interruption has never occurred

● A signal handler is a function that gets called when a process receives
a signal. Every signal may have a specific handler associated with it. A
signal handler is called in asynchronous mode. Failing to handle
various signals, would likely cause our application to terminate, when it
receives such signals

Instructor:Arif Butt

Introduction to Signals (cont...)

14Punjab University College Of Information Technology (PUCIT)

Synchronous & Asynchronous Signals
● Signals may be generated synchronously or asynchronously
● Synchronous signals pertains to a specific action in the program

and is delivered (unless blocked) during that action. Examples:
● Most errors generate signals synchronously
● Explicit request by a process to generate a signal for the same

process
● Asynchronous signals are generated by the events outside the

control of the process that receives them. These signals arrive at
unpredictable times during execution. Examples include:

● External events generate requests asynchronously
● Explicit request by a process to generate a signal for some

other process

Instructor:Arif Butt

15Punjab University College Of Information Technology (PUCIT)

Signal Delivery and Handler Execution
Instructor:Arif Butt

Start of program

Program Code

Instruction n

Instruction n+1

F
lo

w
 of e

xecu
tion

Signal Handler

Code of signal
handler is
executed

1

2

4

3

return

Program resumes at point of interruption

Kernel calls S.H on behalf of process

exit()

Signal delivery

5

16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

 Signal Handling on the Shell
Proof of Concept

I hear & I forget;
I see & I remember;
I do & I understand.

17Punjab University College Of Information Technology (PUCIT)

● Every signal has a symbolic name and an integer value associated with
it, defined in /usr/include/asm-generic/signal.h

● You can use following shell command to list down the signals on your
system:

$ kill -l
● Linux supports 32 real time signals from SIGRTMIN (32) to

SIGRTMAX (63). Unlike standard signals, real time signals have no
predefined meanings, are used for application defined purposes. The
default action for an un-handled real time signal is to terminate the
receiving process. See also $ man 7 signal

Instructor:Arif Butt

Signal Numbers and Strings

18Punjab University College Of Information Technology (PUCIT)

Sending Signals to Processes
A signal can be issued in one of the following ways:

● Using Key board

● <Ctrl+c> gives SIGINT(2)

● <Ctrl+\> gives SIGQUIT(3)

● <Ctrl+z> gives SIGTSTP(20)

● Using Shell command

● kill -<signal> <PID> OR kill -<signal> %<jobID>

● If no signal name or number is specified then default is to send
SIGTERM(15) to the process

● Do visit man pages for jobs, ps, bg and fg commands

● bg gives SIGTSTP(20) while fg gives SIGCONT(18)

● Using kill() or raise() system call

● Implicitly by a program (division by zero, issuing an invalid addr, termination of a child process)

Instructor:Arif Butt

19Punjab University College Of Information Technology (PUCIT)

Signal Disposition
Upon delivery of a signal, a process carries out one of the following
default actions, depending on the signal: [$man 7 signal]

1. The signal is ignored; that is, it is discarded by the kernel and has no
effect on the process. (The process never even knows that it occurred)

2. The process is terminated (killed). This is sometimes referred to as
abnormal process termination, as opposed to the normal process
termination that occurs when a process terminates using exit()

3. A core dump file is generated, and the process is terminated. A core
dump file contains an image of the virtual memory of the process,
which can be loaded into a debugger in order to inspect the state of the
process at the time that it terminated

4. The process is stopped—execution of the process is suspended
(SIGSTOP, SIGTSTP)

5. Execution of the process is resumed which was previously stopped
(SIGCONT, SIGCHLD)

Instructor:Arif Butt

20Punjab University College Of Information Technology (PUCIT)

Signal Disposition (cont...)
● Each signal has a current disposition which determines how the

process behave when the OS delivers it the signal

● If you install no signal handler, the run time environment sets up a set
of default signal handlers for your program. Different default actions
for signals are:

Instructor:Arif Butt

TERM Abnormal termination of the program with _exit() i.e, no
clean up. However, status is made available to wait() &
waitpid() which indicates abnormal termination by the
specified signal

CORE Abnormal termination with additional implementation
dependent actions, such as creation of core file may occur

STOP Suspend/stop the execution of the process
CONT Default action is to continue the process if it is currently stopped

21Punjab University College Of Information And Technology(PUCIT)

Important Signals
Instructor:Arif Butt

SIGHUP(1) Informs the process when the user who run the process logs out. When a
terminal disconnect (hangup) occurs, this signal is sent to the controlling
process of the terminal. A second use of SIGHUP is with daemons. Many
daemons are designed to respond to the receipt of SIGHUP by
reinitializing themselves and rereading their configuration files.

SIGINT(2) When the user types the terminal interrupt character (usually <Control+C>,
the terminal driver sends this signal to the foreground process group. The
default action for this signal is to terminate the process.

SIGKILL(9) This is the sure kill signal. It can’t be blocked, ignored, or caught by a
handler, and thus always terminates a process.

SIGPIPE(13) This signal is generated when a process tries to write to a pipe, a FIFO, or a
socket for which there is no corresponding reader process. This normally
occurs because the reading process has closed its file descriptor for the IPC
channel

SIGALRM(14) The kernel generates this signal upon the expiration of a real-time timer set
by a call to alarm() or setitimer()

SIGTERM(15) Used for terminating a process and is the default signal sent by the kill
command. Users sometimes explicitly send the SIGKILL signal to a
process, however, this is generally a mistake. A well-designed application
will have a handler for SIGTERM that causes the application to exit
gracefully, cleaning up temporary files and releasing other resources
beforehand. Killing a process with SIGKILL bypasses SIGTERM handler.

(Default Behavior: Term)

22Punjab University College Of Information Technology (PUCIT)

Important Signals
Instructor:Arif Butt

SIGQUIT(3) When the user types the quit character (Control+\) on the keyboard, this
signal is sent to the foreground process group. Using SIGQUIT in this
manner is useful with a program that is stuck in an infinite loop or is
otherwise not responding. By typing Control-\ and then loading the
resulting core dump with the gdb debugger and using the backtrace
command to obtain a stack trace, we can find out which part of the program
code was executing

SIGILL(4) This signal is sent to a process if it tries to execute an illegal (i.e.,
incorrectly formed) machine-language instruction module

SIGFPE(9) Generate by floating point Arithmetic Exception

SIGSEGV(11) Generated when a program makes an invalid memory reference. A
memory reference may be invalid because the referenced page
doesn’t exist (e.g., it lies in an unmapped area somewhere between
the heap and the stack), the process tried to update a location in read-
only memory (e.g., the program text segment or a region of mapped
memory marked read-only), or the process tried to access a part of
kernel memory while running in user mode. In C, these events often
result from dereferencing a pointer containing a bad address. The
name of this signal derives from the term segmentation violation

(Default Behavior: Core)

23Punjab University College Of Information Technology (PUCIT)

Important Signals (cont...)
Instructor:Arif Butt

SIGSTOP(19) This is the sure stop signal. It can’t be blocked, ignored, or
caught by a handler; thus, it always stops a process

SIGTSTP(20) This is the job-control stop signal, sent to stop the foreground
process group when the user types the suspend character
(usually <Control+Z>) on the keyboard.. The name of this
signal derives from “terminal stop”

Default Behavior: Stop

Default Behavior: Cont
SIGCHILD(17) This signal is sent (by the kernel) to a parent process when

one of its children terminates (either by calling exit() or as
a result of being killed by a signal). It may also be sent to a
process when one of its children is stopped or resumed by a
signal

SIGCONT(18) When sent to a stopped process, this signal causes the process
to resume (i.e., to be rescheduled to run at some later time).
When received by a process that is not currently stopped, this
signal is ignored by default. A process may catch this signal,
so that it carries out some action when it resumes

24Punjab University College Of Information Technology (PUCIT)

Masking of Signals
● A signal is generated by some event. Once generated, a signal is later

delivered to a process, which then takes some action in response to the
signal. Between the time it is generated and the time it is delivered, a
signal is said to be pending. Normally, a pending signal is delivered to
a process as soon as it is next scheduled to run, or immediately if the
process is already running (e.g., if the process sent a signal to itself).
There can be at most one pending signal of any particular type, i.e.,
standard signals are not queued

● Sometimes, however, we need to ensure that a segment of code is not
interrupted by the delivery of a signal. To do this, we can add a signal to
the process’s signal mask—a set of signals whose delivery is currently
blocked. If a signal is generated while it is masked/blocked, it remains
pending until it is later unmasked or unblocked (removed from the
signal mask)

Instructor:Arif Butt

25Punjab University College Of Information And Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

