
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 1.2
UNIX make Utility &

Packages

Course: Advanced Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● Introduction to UNIX make utility
● Structure of UNIX makefile
● How make utility work (Examples 1-2)
● Multiple targets in a makefile (Example 3)
● Multiple makefiles in a Project (Example 4)
● Use of macros in a makefile (Example 5)
● Binary vs Open-Source s/w Packages
● Downloading and installing open-source softwares
● Packaging your software projects using

●GNU autotools
●Cmake utility

3

Make Utility-Introduction
Instructor:Arif Butt

1. Imagine you write a program and divide it into hundred .c files and some header
files

2. To make the executable you need to compile those hundred source files to create
hundred relocatable object files and then you need to link those object files to final
executable

3. What happens if we make changes to one of these files:
(a) Recompile all the files and then link all of them
(b) Recompile only the file which has changed and then link

➢ What if instead of .c file a .h file has changed
➢ Solution: Recompile only those .c files that include this header file and then link

4. UNIX make utility is a powerful tool that allows you to manage compilation of
multiple modules into an executable

5. It reads a specification file called “makefile” or “Makefile”, that describes
how the modules of a s/w system depend on each other. If you want to use a non-
standard name you can specify that name to make using -f option

6. Make utility uses this dependency specification in the makefile and the time
when various components were modified, in order to minimize the amount of
recompilation

Punjab University College Of Information Technology (PUCIT)

4Punjab University College Of Information Technology (PUCIT)

Structure of Makefile
Instructor:Arif Butt

target : dependency1 dependancy2 ... dependency n
<tab> command

Name of the executable to be build
Name of the files on which the target depends (.c and .h files)

Shell command to create the target from dependencies

1. This is one dependency rule in a makefile

2. A makefile may have several such rules. Every make rule describes
the dependency relationship

3. Advantages of make utility:

(a) Makes management of large s/w projects with multiple source files easy

(b) No need to recompile a source file that has not been modified, only those
files that have been changed are recompiled, others are simply relinked

5Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Examples 1-2

6

Instructor:Arif Butt

make[options]
There are several options to make. For details refer to man page. The three most
commonly used are:

Options to make

-f By default make looks for a file “makefile” in the current directory. If
doesn't exist, it looks for “Makefile”. To tell make to use a different
file, user -f option followed by filename

-n To tell make to print out what it would have done w/o actually doing it

-k Tells make to keep going when an error is found, rather than stopping
as soon as the first problem is detected. You can use this to find out in
one go which source files fail to compile

Punjab University College Of Information Technology (PUCIT)

7

Instructor:Arif Butt

Multiple Targets in a Makefile
● A makefile can have multiple targets. We can call a make file with the

name of a particular target
● To tell make to build a particular target, you can pass the target name to

make as parameter (By default, make will try to make the first target listed
in makefile)

● Many programmers specify all as the first target in their makefile and
then list the other targets as being dependencies for all

● A phony target is a target without dependency list. Some important phony
targets are all, clean, install

clean:

-@rm -f *.o
● If there is no .o file in the current working directory, make will return an

error. If we want make to ignore error while executing a command we
proceed the command with a hyphen as done above. Moreover, make print
the command to stdout before executing. If we want to tell make not to print
the command to stdout before executing we use @ character

Punjab University College Of Information Technology (PUCIT)

8Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Example 3

9

Instructor:Arif Butt

Multiple Makefiles in a Project
● Project source divided in multiple directories
● Different developers involved
● Multiple makefiles
● Top level makefile use include directive

● Include Directive: Tells make to suspend reading the current
makefile and read one or more other makefiles before continuing

include ./d2/makefile ./d3/makefile

Punjab University College Of Information Technology (PUCIT)

10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Example 4

11

Instructor:Arif Butt

Use of Macros in a Makefile
● A Makefile allows us to use macros or variables, so that we can

write it in a more generalized form. Variables allow a text string to be
defined once and substituted in multiple places later

● We can define macros/variables in a makefile as:

MACRONAME=value
● We can access the macros as $(MACRONAME)
● Example: We can use a macro to give options to the compiler, e.g.,

while an application is being developed, it will be compiled with no
optimization but with debugging information included. So we declare
a macro CFLAGS

 CFLAGS = -std=c11 -O0 -ggdb -Wall

and later can use it with all compilation commands like
gcc -c file.c $(CFLAGS)

Punjab University College Of Information Technology (PUCIT)

12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Example 5

13

Instructor:Arif Butt

Special Internal Macros
● Each of the following four macros is only expanded just before it is used. So

the meaning of the macro may vary as the makefile progress

$? List of dependencies changed more recently than the
current target

$@ Name of the current target

$< Name of the current dependency

$* Name of the current dependency w/o extension

Punjab University College Of Information Technology (PUCIT)

14Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Binary Softwares
vs

 Open-Source Softwares

15

Binary Software Packages
Instructor:Arif Butt

● A binary package is a collection of f iles bundled into a single f ile
containing

➢ executable f iles (compiled for a specif ic platform),

➢ man/info pages,

➢ copy right information,

➢ conf iguration and installation scripts

● It is easy to install softwares from binary packages built for your
machine and OS, as the dependencies are already resolved

● For the Debian based distributions (Ubuntu, Kali, Mint, ArchLinux)
they come in .deb format and the package managers available are
apt, dpkg, aptitude, synaptic

● For RedHat based distributions (Fedora, CentOS, OpenSuse) the
packages come in .rpm format and the available package managers
are rpm and yum.

Punjab University College Of Information Technology (PUCIT)

16

Open-Source Software Packages
Instructor:Arif Butt

An Open-source software is a software with its source code made
available with a license in which the copyright holder provides the
rights to study, change, and distribute the software to anyone and for
any purpose (GNU GPL). Normally distributed as a tarball containing:

● Source code f iles
● README and INSTALL
● AUTHORS
● Conf igure script
● Makef ile.am and Makef ile.in

A source package is eventually converted into a binary package for a
platform on which it is conf igured, build and installed. We normally
use source packages to install softwares for following reasons:

● We cannot f ind a corresponding binary package
● We want to enhance functionalities of a software
● We want to f ix a bug in a software

Punjab University College Of Information Technology (PUCIT)

17Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Downloading and Installing
Open-Source Softwares

18

How to download OSS Packages?
Instructor:Arif Butt

● Option 1: You can download from some ftp repository using either
your browser or may be the famous wget command from a Linux
terminal.

$wget ftp://ftp.gnu.org/gnu/hello/hello-2.10.tar.gz

● Option 2: You can use advanced packaging tool to download in
present working directory by the following command:

$sudo apt-get source hello

● Option 3: You can also use git if the software is there on some
public git repository like github.com or bitbucket.org

Punjab University College Of Information Technology (PUCIT)

19Punjab University College Of Information Technology (PUCIT)

Magic Spell to Install Open-Source Packages
Instructor:Arif Butt

● A source package is eventually converted into a binary package for
a platform on which it is configured, build, and install.
Many a times, we all have recited the following magic spell to
install a UNIX open-source tarball:

$./configure

$ make

$ sudo make install

20Punjab University College Of Information Technology (PUCIT)

Configure the Open-Source Software
Instructor:Arif Butt

$./configure
● The configure script makes sure that all of the

dependencies for the rest of the build and install
process are available. For example, for a software written
in C, it ensures that the system have a C compiler, and
find out what it is called and where to find it

● For our myexe package, once we execute the
configure script it will create the Makefile that is
required to build and install the software

● You can view the contents of the Makefile of this
software, which contains about 3.4K lines

21Punjab University College Of Information Technology (PUCIT)

Build the Open-Source Software
Instructor:Arif Butt

$ make
● The build process runs a series of tasks defined in a
Makefile to build the finished program from its source
code. The tarball you download usually doesn't include a
finished Makefile. Instead it comes with a template
called Makefile.in and the configure script
produces a customized Makefile specific to your system

● Once you give the make command, it will run the
Makefile in the pwd or root directory of package, which
may further call other makefiles (if any) in other directories
and hence all source files in package will be compiled. This
may take some time depending on your system and the size
of the software

22Punjab University College Of Information Technology (PUCIT)

Install Open-Source Software
Instructor:Arif Butt

$ sudo make install
●The install process copies the build program and its
libraries and documentation to the correct locations. The
program's binary(ies) are copied to a directory on your
PATH, and the program's manual page(s) are copied to a
directory on your MANPATH. Depending on where the
software is being installed, you might need escalated
permissions to do this step

23Punjab University College Of Information Technology (PUCIT)

Un-installing Open-Source Software
Instructor:Arif Butt

● Makefile has many targets other than install, l ike
uninstall, clean and distclean:

$sudo make uninstall
$hello
No such file or directory
$which hello
$man hello
No manual entry for hello

●The clean target can be used after the installation to remove all the
object and executable files from the source directory
$ make clean

●Similarly, after installation if you want to remove all the files that
were created by configure script

$ make distclean

24Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Packaging your software using
GNU Autotools

autoconf & automake

25Punjab University College Of Information Technology (PUCIT)

Packaging s/w using GNU autotools
Instructor:Arif Butt

aclocal aclocal.m4configure.ac

configureautoconf

Makefile.inMakefile.am automake

configure.ac

MakefileMakefile.in configure

make dist myexe-1.0.tar.gz

26Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Packaging your software using
cmake

27Punjab University College Of Information Technology (PUCIT)

What is cmake
Instructor:Arif Butt

In the simplest possible words, CMake is a cross

platform Makefile generator. It is an effort to

develop a better way to conf igure, build and deploy

complex softwares written in various languages,

across many different platforms like Linux,

*UNICES, MacOS, MS Windows, iOS, Android,...

 https://cmake.org

https://cmake.org/

28Punjab University College Of Information Technology (PUCIT)

Friends of cmake
Instructor:Arif Butt

CMake has friends softwares that may be used on
their own or together

● CMake: Build system generator

● CPack: Package generator used to create platform-
specif ic installers

● CTest: A test driver tool used to run regression tests

● CDash: A web application for displaying test results and
performing continuous integration testing

29Punjab University College Of Information Technology (PUCIT)

How Cmake work?
Instructor:Arif Butt

The CMake utility reads project description from a f ile
named CMakeLists.txt and generates a Build System
for a Makef ile project, Visual Studio project, Eclipse project,
Xcode project, …

cmake Makefiles & other
system required
files

CMakeLists.txt

30Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

