
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 1.3
Overview of VCSs

git

Course: Advanced Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

2Punjab University College Of Information Technology (PUCIT)

Agenda
Instructor:Arif Butt

● Intro to Version Control
● Types of Revision Control Systems

● Local Data Model (sccs, rcs)
● Centralized Data Model (cvs, svn)
● Distributed Data Model (bitkeeper, git, mercurial, darcs)

● Downloading, installing and configuring git
● Working with git

● Initializing a git repository
● Adding and committing files to git repository
● Viewing logs and status
● Deleting, renaming and comparing files
● Ignoring files
● Undoing changes and moving to old commits

3Punjab University College Of Information Technology (PUCIT)

Agenda
Instructor:Arif Butt

● Working with branches in git
● Creating a new branch
● Switching branches and working on them
● Comparing two branches
● Renaming and deleting a branch
● Merging branches and handling merge conflicts

● Working with Remote Repositories in git
● What is remote repository
● Git hosting services
● Creating a remote repository on bitbucket.org
● Uploading a local project repo on bitbucket
● Downloading a remote project repo from bitbucket

4Punjab University College Of Information Technology (PUCIT)

Overview of Revision/Version Control System
Instructor:Arif Butt

● A Version Control System is a software tool that records changes
to a file or a set of files over time, so that you can recall specific
versions later

● Before VCSs exists we used different ways for maintaining
versions of file(s) e.g. using save as for every new change made
to file and making a copy and then giving a version number and
date of update to that file

● A VCS allows us to
➢ Maintain a history of different versions of a file
➢ To move back and forth between these versions
➢ Compare different versions
➢ Merge multiple versions of same file to create a new version
➢ Lock other users when one user is altering a file
➢ Conflict resolution

5Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Types of VCSs
I - Local Data Model

6Punjab University College Of Information Technology (PUCIT)

Local Data Model
Instructor:Arif Butt

File

File.Version3

File.Version2

File.Version1

Local Computer

Version database

7Punjab University College Of Information Technology (PUCIT)

Local Data Model (cont..)
Instructor:Arif Butt

Source Code Control System: (SCCS-1972)
● Written in C, developed by AT&T and bundled free with UNIX

● It was not the first VCS, rather the first to become popular

● SCCs keeps the original file as it is and instead of saving the
complete new version just save the snapshot of the changes

● If you want ver.3 of a file, you take ver.1 of the file and apply two
set of changes to it to get to ver.3

8Punjab University College Of Information Technology (PUCIT)

Local Data Model (cont..)
Instructor:Arif Butt

Revision Control System: (RCS-1982)
● Written in C, developed at Purdue University

● SCCS was for UNIX only, while RCS was for PCs as well

● RCS keeps the most recent version of a file in its whole form and if
you want a previous version, you make changes to the latest version
to re-create the older version

● This is faster than SCCS, as most of the time we need to work with
the latest version of the file

9Punjab University College Of Information Technology (PUCIT)

Local Data Model (cont..)
Instructor:Arif Butt

Limitations of Local VCSs:

● You can track changes in a single file and not in a set of files or in
a whole project

● Only one user can work with a file at a single time, therefore,
multiple users / team members cannot collaborate and work on
the same project

10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Types of VCSs
II - Centralized Data Model

11Punjab University College Of Information Technology (PUCIT)

Centralized Data Model (cont..)
Instructor:Arif Butt

File.Version3

File.Version2

File.Version1

Central CVS Server

Version Database (Repository)

File

Computer B

File

Computer A

checkout

checkin/commit

checkout

checkin/commit

12Punjab University College Of Information Technology (PUCIT)

Centralized Data Model (cont..)
Instructor:Arif Butt

Concurrent Version System: (CVS-1990)
● Written in C and is open source
● Available for UNIX like OSs (UNIX, Linux, Solaris) as well as for

MS Windows
● Introduced the idea of branching. A set of files may be branched at

a point in time so that, from that time onward, two copies of those
files may be developed in different ways independently of each
other

● Limitations
● CVS lacks atomic operations. Uses lock-modify-unlock model,

allowing a user to place a lock on the checkout data in the
repository, avoiding concurrency problems

● No file renaming as cannot track directories

13Punjab University College Of Information Technology (PUCIT)

Centralized Data Model (cont..)
Instructor:Arif Butt

Apache Subversion System: (SVN-2000)
● Written in C, and is open source
● Cross platform and is faster than CVS
● Supports atomic commits
● Can track directories, so you can rename files within

directories
● It can also track non-text files like images

14Punjab University College Of Information Technology (PUCIT)

Centralized Data Model (cont..)
Instructor:Arif Butt

Limitations of Centralized VCSs:

● Single point of failure as the centralized server containing the
version database may crash

● No collaboration if server is down

● Developers do not have history of project on their local machines

15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Types of VCSs
III - Distributed Data Model

16Punjab University College Of Information Technology (PUCIT)

Distributed Data Model
Instructor:Arif Butt

Version 3

Version 2

Version 1

ServerComputer

Version Database

Version 3

Version 2

Version 1

Computer A

Version Database

Version 3

Version 2

Version 1

Computer B

Version Database

17Punjab University College Of Information Technology (PUCIT)

Distributed Data Model (cont..)
Instructor:Arif Butt

Bitkeeper -2000
● Written in C, and is proprietary and closed source
● A community version of bitkeeper with limited functionalities

was free and that was used to manage Linux Kernel source
from 2002 to 2005

● In April 2005, the “community version of bitkeeper” stopped
being free and it was then git was born

18Punjab University College Of Information Technology (PUCIT)

Distributed Data Model (cont..)
Instructor:Arif Butt

git - 2005
● Developed by Linux Torvald in 2005,
● Git is free and open source distributed version control system designed

to handle everything from small to very large projects with speed and
efficiency

● It is compatible with all UNIX-like systems (Linux, MacOS, Solaris,
PCBSD, …) and MS Windows

● It is written mainly in C along with:
● TCL: A general purpose interpreted dynamic programming language,

which is embedded into C programs for rapid prototyping
● Perl: A general purpose interpreted dynamic programming language

and is popular for its string parsing abilities
● Python: A general purpose interpreted dynamic programming language

and supports multiple programming paradigms like procedural, object
oriented, imperative and functional

19Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

git
Installation & Configuration
A helloworld with git

20Punjab University College Of Information Technology (PUCIT)

Basic Workflow of git
Instructor:Arif Butt

Local
Repository

Staging
Index

Working
Directory

git init

git add

git commit

21Punjab University College Of Information Technology (PUCIT)

The commit Objects
Instructor:Arif Butt

Suppose you have made three commits in your project, that means
there are three change sets. Each commit object refers to a change
set. Following figure illustrates how the series of commits are linked
together. Note that the parent of each refers to a previous commit.
We can see who has committed, when, why and with what change

231a5...

Parent: nil
Author: arif
Msg: initial commit
Timestamps: ...

Change set A

5ac27...

Parent: 231a5
Author: arif
Msg: 2nd commit
Timestamps: ...

Change set B

1e3f5...

Parent: 5ac27...
Author: arif
Msg: 3rd commit
Timestamps: ...

Change set C

22Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

25a76 36a2c f1d43 7ba12

HEAD

25a76 36a2c f1d43

HEAD

HEAD

25a76 36a2c

25a76

HEAD

HEAD Pointer in git

23Punjab University College Of Information Technology (PUCIT)

Life cycle of a file in git
Instructor:Arif Butt

24Punjab University College Of Information Technology (PUCIT)

Move to an old commit
Instructor:Arif Butt

We can move the head pointer to some previous commit and start
recording the commits from that commit object onwards. There are
three ways of doing this
Soft Reset: $ git reset --soft <ID>

● Head is moved to the specified commit ID
● No changes are made in the staging index or working directory

Mixed Reset: $ git reset --mixed <ID>
● Head is moved to the specified commit ID
● Staging index is also changed to match the local repository
● No changes are made in the working directory

Hard Reset: $ git reset --hard <ID>
● Head is moved to the specified commit ID
● Staging index and working directory both match the local

repository

25Punjab University College Of Information Technology (PUCIT)

Basic Workflow of git (Review)
Instructor:Arif Butt

Local
Repository

Staging
Index

Working
Directory

git init

git add

git commit

Tracked Files (Unmodified, Modified, Staged)
Untracked Files

Create new files
Edit contents
Delete/rename files
Ignore files
Reset to old commits

26Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

git
Branches

27Punjab University College Of Information Technology (PUCIT)

Overview of git Branches
Instructor:Arif Butt

25a76 36a2c f1d43 7ba12

HEAD

25a76 36a2c f1d43

HEAD

HEAD

25a76 36a2c

25a76

HEAD

A git branch represents an independent line of development. Every
git repository has at least one branch called the master branch. An
illustration of master branch is shown below:

28Punjab University College Of Information Technology (PUCIT)

Overview of git Branches (cont...)
Instructor:Arif Butt

25a76 36a2c

HEAD

Suppose you are working on a project and have done some commits on
the master branch which is the main line of your project development as
shown above. You think of adding a new feature to your project but you
are not sure whether it will work or not

● OPTION 1: You continue working on the same branch. If the new
feature is a success, its GR8 and the development continues as shown
below:

25a76 36a2c f1d43 7ba12 7ba12

HEAD
However, if the new feature is a failure you roll back to commit with SHA
36a2c using a git reset, and your master branch again becomes
similar to the one shown at the top

master

master

29Punjab University College Of Information Technology (PUCIT)

Overview of git Branches (cont...)
Instructor:Arif Butt

25a76 36a2c

HEAD

OPTION 2:

master

25a76 36a2c f1d43 7ba12

HEAD

234d12 348cd ac12f

HEAD

master

new-branch

If the new-branch is a success, then you need to merge your new-branch with the master branch,
otherwise, you can delete the new-branch and the master branch continue growing

$ git branch new-branch

$ git checkout new-branch

$ git checkout master

30Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

git
Merging the Branches

31Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Now we know how to create a new branch and how to
perform development on that branch. After we are done
developing and testing the new feature, it is time to bring
those changes back to the master branch. For this we need
to do a merge

● There can be two types of merges
● Fast Forward Merge
● Real Merge

Merging Branches in git

32Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Fast Forward Merge

25a76 36a2c

HEAD
234d12 348cd

HEAD

master

new-branch

25a76 36a2c 234d12 348cd

HEAD

master

After fast forward merge:

$ git checkout master
$ git merge new-branch

Before you give merge command, your current branch should be the receiving branch

33Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

You can always force git not to do a fast forward merge, rather do
an additional commit merge

Real Merge
25a76 36a2c

HEAD
234d12 348cd

HEAD

master

new-branch

$git checkout master
$git merge --no-ff newbranch

25a76 36a2c

234d12 348cd HEAD

master

new-branch

abc124

34Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

In this scenario a fast forward merge is not possible. So when you do
a merge, git will perform a real merge

Real Merge
25a76 36a2c

HEAD

234d12 348cd ac12f

HEAD

master

new-branch

236d1

25a76 36a2c

HEAD

234d12 348cd ac12f

master

new-branch

236d1 21afd7

$git checkout master
$git merge newbranch

35Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

git
Handling Merge Conflicts

36Punjab University College Of Information Technology (PUCIT)

What is a Merge Conflict?
Instructor:Arif Butt

Suppose there are two branches master and branch1, as shown:

25a76 36a2c
master branch1

Both have a file suppose file1.txt, which is of course similar in both. A
developer on master branch edit line#25 of file1.txt and do a commit.
Another developer on branch1 edit line#50 of file1.txt and do a commit

25a76 36a2c
master

branch1

21de3

3ad2b

25a76 36a2c
master

branch1

21de3

3ad2b

abc490

Now if you merge, it will be a success, because both have made changes to same
file, but to different lines

37Punjab University College Of Information Technology (PUCIT)

Handling Merge Conflicts
Instructor:Arif Butt

However, if both the developers have made changes to same line or set of
lines a conflict will occur, which git cannot handle and it will give a
message that auto-merging failed. In case of a merge conflict we have
three choices to resolve the conflict:
Abort merge:
$ git merge --abort

Resolve manually:
Open the f ile in some editor and perform the changes manually, add,
commit, and f inally perform merge
$ git merge <branchname>

Use merge tools:
You can use different tools to automate this process like araxis,
diffuse, kdiff3, xxdiff, diffmerge
$ git mergetool --tool=diffuse

38Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Working of git
Remote Repositories

39Punjab University College Of Information Technology (PUCIT)

Remote Repository
Instructor:Arif Butt

Local
Repository

Staging
Index

Working
Directory

git init

git add

Remote
Repository

git commit

40Punjab University College Of Information Technology (PUCIT)

Hosting Services for Versioning Systems
Instructor:Arif Butt

Some of the most famous hosting services are:
● https://bitbucket.org
● https://github.com
● https://gitlab.com

41Punjab University College Of Information Technology (PUCIT)

Pushing a Local Repo to Remote Repo
Instructor:Arif Butt

Local
Repository

Staging
Index

Working
Directory

git init

git add

Remote
Repository

git remote add origin <URL>
git push origin master

git commit

Initialize

Update

42Punjab University College Of Information Technology (PUCIT)

Cloning Remote Repo to Local
Instructor:Arif Butt

Local
Repository

Staging
Index

Working
Directory

git add

Remote
Repository

git clone <URL>

git push origin master
git commit

43Punjab University College Of Information Technology (PUCIT)

Workflow of git (Review)
Instructor:Arif Butt

Local
Repository

Staging
Index

Working
Directory

git init

git add

Remote
Repository

git clone <URL>

git push

git pull = fetch+merge

git fetch

git commit

Initialize

Fetch/pull

Update

44Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

