
Writing an Operating System with Modula��

Emin G�un Sirer Stefan Savage Przemys�law Pardyak

Greg P� DeFouw Mary Ann Alapat Brian N� Bershad

Department of Computer Science and Engineering

University of Washington

Seattle� WA �����

� Introduction

We are using Modula�� to write an operating system called SPIN at the University of Washington �Ber�
shad et al� ���� The primary goal of the system is to allow applications that require high performance
system services to customize the operating system for a particular task� The system provides a core service
infrastructure that provides threads� virtual memory� and device management together with an extension
facility that allows application�speci�c services to be dynamically downloaded into the kernel� We are using
the system to develop internetworking services� HTTP servers� video servers� and a general purpose UNIX
environment�

When we began the design of the SPIN operating system� we sought a language that would help us inte�
grate untrusted extension code into the kernel� We converged on Modula�� as the implementation language
for both extensions and the core system� Modula�� is an ALGOL�like� typesafe� high�level programming lan�
guage that supports interfaces� objects� threads� exceptions and garbage collection� There is a well�de�ned�
safe subset of Modula�� which allows untrusting clients to securely share the same address space� Most of
the SPIN kernel and extensions� which compromise about 	
�


 lines of Modula�� code� are written in this
safe subset� The kernel also contains C and assembly code which we have liberally borrowed from the sources
for Digital UNIX� Our borrowed sources implement platform speci�c services� such as device drivers� and
are available to the Modula�� component of the system through about �
 functions in a dozen interfaces�

Despite the fact that the primary reference for Modula�� is titled �Systems Programmingwith Modula���

�Nelson ��� we have found that the general systems community has remained skeptical of the language�
Instead� they hold to languages such as C and C�� which o�er little more than an environment for advanced
assembly language programming� We believe that this skepticism is due to some misplaced concerns and
misunderstanding that surround Modula��� rather than any limitations of the language� The purpose of this
paper is to help clear up some confusion about developing software with Modula��� In particular� we will
concentrate on using Modula�� to write an operating system� which is where our primary experience lies�

The key point with which we hope to leave the reader is that there is a fundamental di�erence between
a programming language� and a particular implementation of that language� For example� there are many
di�erent versions of the C compiler and its runtime utilities� In the �
�s though� BSD UNIX�s pcc and libc�a

essentially de�ned the C programming language that many people use today� Gradually� improvements in the
compiler and the libraries allowed people to hold C up as the �language to be beat
 in terms of expressiveness
and performance� A similar evolution occurred with C��� for which the �rst implementation �ATT�s cfront�
�Stroustrup ��� substantially underperformed C� Over time� though� the compiler and runtime improved�

�This research was sponsored by the Advanced Research Projects Agency� the National Science Foundation �Grants no�
CDA�������	 and CCR�����	��
 and by an equipment grant from Digital Equipment Corporation� Bershad was partially
supported by a National Science Foundation Presidential Faculty Fellowship� Sirer was supported by an IBM Graduate Student
Fellowship�



together with people�s understanding about what they could and could not do e�ciently with the language
and its default runtime environment� Today� commercial C�� compilers generate code with similar quality
to C compilers� and programmers rarely complain about the implementation of the language �although
complaints about the language itself litter the Usenet bulletin boards��

Today� the Modula�� programming language is widely considered synonymous with its primary reference
implementation from Digital�s Systems Research Center �DEC SRC�� The DEC SRC implementation is a
publicly available� highly portable Modula�� system that consists of a compiler front�end� a code�generator�
a set of runtime services� standard libraries� a debugger� and a distributed object library� The compiler
front�end translates Modula�� source code into GNU RTL intermediate representation�Stallman �
�� and
a gcc based code generator emits object code directly� The goals of the DEC SRC implementation have
always been portability �the system runs on �� di�erent architectures and �� di�erent operating systems�
and functionality �the system�s runtime services consist of over ��
 interfaces��

Although the DEC SRC environment excels at many tasks� there are several at which it comes up short�
Unfortunately� it has been these shortcomings of the implementation that have caused many in the systems
development community to perceive the language as inadequate for use in a serious development environment�
Since we seriously intended to develop a production quality operating system� these perceptions caused us
concern� Consequently� before choosing Modula�� as our system development language� we compiled a list
of shortcomings based on the �community�s collective wisdom�
 In other words� we scanned the discussion
lists and tried to understand what people were saying� In particular� the most common concerns we saw
about Modula�� were�

�� Modula�� programs are slow�

�� Modula�� programs take too long to compile�

�� Modula�� programs require too much memory�

	� Modula�� threads are slow�

�� Modula�� checked runtime errors result in program termination�

�� Modula�� can not be used in a mixed�language environment�

�� Modula���s dynamic storage management is expensive�

In building SPIN� we came to understand that these were concerns primarily about the system�s runtime
environment� and secondarily about the DEC SRC compiler� In the rest of this paper� we address each
concern and describe how we have dealt with it in our system�

We hope that the reader does not interpret our discussion as being a resounding endorsement for the
Modula�� language� Indeed� we have found a few places where the language is de�cient in the construction
of large� extensible� safe systems� Most notably� these de�ciencies arise in the use of operations that �ought

to be safe �vis a vis the language�s de�nition� but are not� or are safe but ought not to be� For example�
the language does not allow for safe casting operations� whereby a data structure is represented as a union
of possible types� even though the cast would not create a situation that might violate typesafety� In a
companion paper �Hsieh et al� ��� we describe some of the changes that we have made to the language and
its compiler in order to satisfy these types of problems�

� Evaluating the concerns

We discuss the major concerns about Modula�� from several angles� Where the concern is related to per�
formance� we present data that shows the concern is not intrinsic to the language� but relevant only to the
reference implementation� Where the concern is related to functionality� we describe how we have modi�ed
the standard reference compiler or the runtime to provide the functionality whose absence or unacceptability
is implied by the concern�



��� Modula��� code quality� and performance

There are two aspects to the concerns about the quality of code generated from Modula��� The �rst has
to do with the cost of ensuring safety within a compiled module� and the second has to do simply with the
quality of the compiler�

����� Safety and Compiler�Generated Dynamic Checks

Modula���s safety guarantees require that the compiler ensure that there are enough runtime checks in place
to prevent a violation of typesafety from occurring within a module that is explicitly marked as SAFE� Most
checks can be performed statically when the program is compiled� Ensuring the safety of array accesses�
however� can require dynamic checks that can impact the performance of array intensive applications�

The DEC SRC Modula�� compiler is extremely conservative about runtime checks for array bounds
violations� prefacing every index operation with a check against the bounds� Moreover� the front end is not
very aggressive in the RTL that it passes on to gcc� so opportunities for removing some of these runtime checks
through optimization are lost� As mentioned in the introduction� this is not an issue with the language� but
with the implementation of the language� Techniques to eliminate unnecessary range checks are well�known
within the compiler community�Gupta �
� Gupta ��� Kolte � Wolfe ���� and are clearly applicable to Modula�
�� The Vortex research compiler �Chambers et al� ���� being developed at the University of Washington�
performs redundant range check elimination among other optimizations and typically eliminates �
��
� of
range checks in our benchmarks�

In practice� we have not had incentive to write code fragments in any language other than Modula��
strictly to avoid ine�ciencies in generated code� In a few places� we have retreated to assembly language
�the system�s bcopy� bzero� and checksum routines�� but these functions are generally written in assembly
even in systems built using C�

����� Compiler Quality

Modula�� is a straightforward imperative language� and with few exceptions� there is little about the language
that makes it more di�cult to compile e�ciently than other languages such as C� However� like other
languages� the quality of the compiler has a direct impact on the quality of the generated code�

Benchmark C M� Unsafe M� Safe
GCC DEC SRC Vortex DEC SRC Vortex

MD� ���� ���� ���	 ���
 �	��
hotlist ���� ���� ���
 ���� ���

lld 
��� 
��� ���� ���� ����
Richards ���� 	��	 		�� 		�	 ����

Table �� Comparison of GCC� the DEC SRC Modula�� compiler and the Vortex based Modula�� compiler� Times are in
seconds and were gathered on a dedicated DECStation �������� ��� MHz with �
 MB main memory� The mean of �� timings
is reported�

Table � illustrates the di�erence in code quality that results when di�erent compilers generate semanti�
cally equivalent executables� The C versions of the benchmarks o�er no safety guarantees� Safe Modula��
measurements� on the other hand� include compiler generated dynamic checks wherever necessary which en�
sure that all memory accesses are legitimate� The unsafe Modula�� measurements� which omit all dynamic
checks� are included to demonstrate the baseline performance of the compilers in relation to GCC�

Our benchmarks consist of common operating system tasks and typical operating system extensions �Ber�
shad et al� ��� Campbell � Tan ��� Small � Seltzer �	�� MD� is a digital signature algorithm �Rivest ���
implemented in Modula��� It is very array intensive which results in the DEC SRC compiler placing �

range checks in its inner loop� However� redundant bounds check elimination in Vortex is able to eliminate
all but one of these checks and reduce the performance di�erence with C to less than �
� for safe code� Lld
is a logical disk simulator that is similarly array intensive� Despite this fact� the overhead of dynamic bound
checks due to safety is roughly ���� of the total execution time� We found that the quality of code gener�
ated for arithmetic operations such as modulus had a much greater impact on performance than dynamic



checks� Hotlist is a page eviction simulation� where the benchmark keeps track of an LRU list of eviction
candidates and traverses the list repeatedly in response to page fault events� In this instance� Modula�� can
guarantee safe behaviour without recourse to any dynamic checks� Hence the C and Modula�� versions of
the benchmark have essentially identical performance� MD�� hotlist and lld were contributed by Small �Small
� Seltzer ���� Richards is an operating system simulator with a synthetic workload of process creation and
termination� The coding style encouraged by Modula�� allows the compiler to produce better code for a
commonly executed switch statement� resulting in higher performance than C� even for safe code�

From these results� other measurements �Small � Seltzer ���� and our experience with the SPIN kernel�
it seems evident that Modula�� compiler technology is currently comparable to that of C� yet o�ers stronger
guarantees about program safety�

��� Modula�� compiler execution time

The DEC SRCModula�� compiler consists of a platform�speci�c back end and a mostly platform�independent
front end� The back end of the Modula�� compiler is a slightly modi�ed version of the GNU optimizing
compiler �based on gcc ������� The front end of the compiler is written in Modula��� and produces a textual
representation of the compiled program in GNU�s Register Transfer Language �RTL�� It then forks o� the
back end which reads the RTL from the �le system to generate a standard COFF object �le�

Because of the amount of machinery involved in each compilation� we initially had concerns that the
compile phase of the �edit�compile�reboot
 cycle would be dominated by compile�link time� We have all
had to work with systems where the turnaround time for a simple one�line kernel change was �
 to �

minutes� and we did not want to repeat that experience� As it turns out� we are able to iterate through
the development cycle quite rapidly due to Modula���s support for incremental recompilation� Once our
kernel has been built� changes to individual �les can be compiled and linked into the kernel image in under
a minute� Moreover� our support for dynamic linking allows us to safely load new code modules into the
kernel without having to perform a complete relink and reboot� Although a full kernel build takes about ��
minutes� we do it rarely�

��� Modula�� and code size

Our next concern had to do with the size of Modula�� executables� Starting with the initial versions of the
reference implementation� the language had a reputation of requiring massive executables� Indeed� using
the DEC SRC reference implementation on the Alpha� the simplest client is almost �

 KB when statically
linked with debugging enabled� This massive size is due to three factors� the language�s requisite core services
such as garbage collection and exception handling� the extra services that are thrown in �for free
 such as
streaming readers and writers� and the fact that the runtime does not support dynamic linking and sharing
of code and data�

We were able to strip out ��� of the runtime simply by identifying those portions which were not needed
by the operating system� We also created a dynamic linking facility �Bershad et al� ��� Sirer et al� ���
that eliminates multiple copies of the runtime by allowing clients access to shared code and data� As a case
in point� our HTTP server extension consists of ��� lines of Modula�� code and consumes �KB of memory
��KB text � 	KB data��

��� Modula�� and threads

A fourth concern of ours was the cost associated with using the Modula�� thread and synchronization services�
Since threads are a fundamental component of our operating system� and since synchronization is a critical
service required within an operating system� we initially felt that it would be necessary to abandon the
language�s thread interface and introduce one of our own� We were reluctant to do this from a practical
standpoint� since the Modula�� threads interface is part of the language de�nition� In addition� we wanted
our kernel programming environment to be as �vanilla
 as possible to shorten the learning curve of people
trying to develop code for the system�

Indeed� it is true that the standard Modula�� threads package that comes with the reference implemen�
tation performs poorly� For example� on a ��� Mhz DEC Alpha� to spawn and terminate a new thread takes



over �

 �secs� While slow� this is the level of performance that can only be expected from any threads
package that implements its services entirely at user�level on top of the UNIX process model� Intrinsically�
thread performance is tied much more to the particular implementation method rather than the interface
that is exported to the clients�

As part of the initial development of our kernel� we reimplemented the Modula�� thread� scheduler and
synchronization services directly on top of a lightweight kernel threading interface called strands �Bershad
et al� ���� The strands interface allows thread packages and schedulers to be tightly integrated with each
other as well as with their clients� In comparison to the �

 �secs required to create a thread on top of a
UNIX process� a Modula�� thread based on a SPIN strand can be created and terminated in �� �secs� From
this� and from other low�overhead thread operations that we perform using the Modula�� threads interface�
we �nd no evidence of any problem with the interface itself�

��� Modula�� failure semantics

Modula�� allows programmers to raise and catch exceptions during the course of program execution� If a
thread raises an exception� the runtime walks through the raising thread�s stack looking for a handler to
catch the exception� If a handler is found� control is passed to it� If not� the thread is said to have committed
a checked runtime error� for which the language leaves the system�s behavior unspeci�ed� In the reference
implementation from DEC SRC� checked runtime errors result in program termination� there is no way for
a thread to recover from its own� or another�s checked runtime error�

For the SPIN operating system� as well as many other environments where programmers are willing to
work hard to ensure liveness� the reference implementation�s interpretation of the semantics of a checked
runtime error is inadequate� Consequently� we changed the runtime system�s implementation of exceptions�
within the speci�cations of the language� such that users are noti�ed of runtime failures through language
exceptions� With this addition� code can implement failure recovery by installing an exception handler for
runtime exceptions and taking remedial action� In the event that a thread fails to do so� another thread can
collect the exception delivered to the failed thread�

��� Using Modula�� in a mixed language environment

As previously mentioned� our kernel relies on some low level platform�speci�c services that we borrow from
the sources of Digital UNIX� These sources are written in C� and therefore directly highlight the concern that
interfacing Modula�� to other languages can be di�cult� There are three aspects to this di�culty� safely
calling foreign code from Modula��� calling Modula�� code from foreign code� and passing data between
them�

In the case of calling out fromModula��� we found that type mismatch errors could occur on the language
boundary� since type information is typically not propagated between languages� Such a mismatch could
potentially be used to circumvent the typesafety of Modula��� In particular� the reference implementation
de�nes a pragma that allows an interface to refer to a function written in a foreign language such as C�
In the reference implementation� this pragma is permissible in safe interfaces� which allows untrusted code
to provide direct access to C functions or data structures of arbitrary type� Since the compiler cannot
enforce type�checking across the language boundary and has to trust the user�supplied type de�nition for
external symbols� there is an unacceptable safety risk� Consequently� we modi�ed the compiler so that the
externalizing pragma could only be used within unsafe interfaces�

To call from C to Modula��� we modi�ed the front end of the compiler to generate C header �les for
Modula�� interface �les� In this way� any function exported via a Modula�� interface can be called directly
from C�

We believe that the concern about passing data between Modula�� and other languages stems from the
fact that the Modula�� heap is automatically managed in ways that are not consistent with the explicit
storage management of C� For example� the DEC SRC reference implementation uses a copying garbage
collector� Consequently� if a Modula�� program passes a collectible reference to C� and C stores the reference
in it�s own uncollectible heap� the collector might copy the object leaving C�s reference dangling� Modula��
provides both collectible and uncollectible heap space �traced and untraced�� so this problem can be avoided
by allocating shared objects from the appropriate heap� Sometimes� though� it is not possible to predict



whether or not a reference will be passed across the language barrier at the time it is allocated� Indeed�
this property is something that ought to be hidden within the modules that communicate with the foreign
language� For this reason� we introduced the notion of a Strong Reference� which is an object allocated from
the traced heap that the collector should consider as temporarily uncollectible and immovable� In this way�
an object can be �strong re�ed
 before it is passed to C�

To pass data from a foreign language �typically C� although occasionally assembly language� to Modula���
we pass the data by reference from the foreign language� and follow one of two strategies on the Modula��
side� We either declare the in parameter as a reference to a record stored on the uncollectible heap �untraced��
or we declare it as variable parameter �for which the compiler generates code that automatically dereferences
the in parameter�� Neither approach has been particularly complicated to use�

��	 Dynamic storage management

Lastly� we were concerned that the overhead of dynamic storage management in Modula�� would be pro�
hibitive� We anticipated two types of overhead here� allocation and collection� Allocation overhead is that
incurred when a thread creates a new object and there is plenty of free space in the heap� Collection overhead
is that incurred in order to ensure free space�

With respect to allocation� there is no fundamental reason why Modula���s allocation overhead should
be any larger than that of a standard C malloc package� since both are implementing the same service�
locating a block of memory having a speci�c size from a free list� Nevertheless� we have measured allocation
overheads on the Alpha using the DEC SRC reference implementation that are roughly four times higher
than for malloc� The reason for this is simple� the DEC SRC allocator was not built to be fast �for example� it
maintains statistics about memory usage on its critical path�� We were able to cut down allocation overhead
by almost a factor of two simply by removing code that had nothing to do with allocation� We are presently
working on a complete reimplementation of the allocator for which overhead will be comparable to C�s� In
any event� allocation overhead has not been a serious problem in the system we�ve built so far because we
avoid allocation altogether on critical paths such as interrupt handling and thread management� In the few
instances where allocation latency is an inherent component of the critical path� e�g� thread fork� we use the
common technique of preallocation and caching of initialized objects to shift the performance penalty to less
critical periods�

The second concern we had about dynamic storage management was collector overhead� speci�cally the
pauses incurred by major collections� Currently� we use a single�threaded collector which requires that
all other concurrent execution� including interrupt handlers� be suspended while it is activated to avoid
mutations of the heap� A typical collection takes about �

 ms� on our platform� which introduces perceptible
delays into the system�

We are dealing with the collector overhead in two ways� The �rst is to use a better collector� We
are examining concurrent and incremental garbage collection techniques �Seligmann � Grarup ��� Appel
et al� ��� to reduce disruptive system pauses� While a better collector can reduce the pause times� it will
not directly address the overhead problem� If garbage is created� there is going to be a penalty to clean
it up� Consequently� we also adopt a �pro�recycling
 attitude within the system� and encourage clients
to reuse objects they have allocated without requiring that they be collected and reallocated� As long as
some protocol and trust is established between cooperating modules� objects of a given type can be shared
and reused without collector or allocator involvement� High�throughput subsystems that deal with large
quantities of data� such as device drivers and the network stack� implement a noti�cation scheme by which
they indicate when a particular item can be reused by their clients� For example� our video server allocates a
bu�er� �lls it in with data from secondary storage� and invokes the network stack by calling UDP�Send� The
bu�er makes its way through the stack down to the device driver� which eventually raises the MBuf�Freed

event to indicate that the bu�er can be reused by the application� The video server can then recycle this
packet to hold other data� without having to wait for a collection and an allocation� Consequently� client
working sets remain bounded in steady�state� decreasing pressure on the garbage collector�

Even though we reduce collector involvement in our system� the collector still serves two important
purposes� it allows safe reuse of memory between unrelated applications� and it acts a safety net for extensions
that are unwilling to follow the memory recycling protocol� Nevertheless� we realize that our current situation



with respect to the collector is not ideal � it is controlling us� rather than we it� We intend to dedicate more
e�ort to this problem with the expectation that we can reduce collection overhead to an acceptable level�

� Summary

In this paper� we have discussed the use of Modula�� in the construction of an operating system� We have
shown that criticisms about a programming language can be misplaced� and are often better directed towards
a particular implementation of that language or its runtime� Moreover� we have shown that it is possible to
construct a high performance implementation of both� We conclude that the safety of Modula�� combined
with its support for systems programming make the language an ideal choice for systems programming� Not
only does Modula�� prevent most common programming errors by virtue of its typesafety� it o�ers a variety
of powerful tools that allow the programmer to tackle a range of systems programming tasks� We have found
the safety of the language� as well as its data hiding properties� generic interfaces and object support to be
e�ective in developing a high�performance� modular system and its extensions�

References

�Appel et al� 		� Appel� A� W�� Ellis� J� R�� and Li� K� Real�time concurrent collection on stock multiprocessors� In Proceedings
of ACM SIGPLAN ��� Conf� on Programming Language Design and Implementation� June ��		�

�Bershad et al� ��� Bershad� B� N�� Savage� S�� Pardyak� P�� Sirer� E� G�� Fiuczynski� M�� Becker� D�� Eggers� S�� and Chambers�
C� Extensibility� Safety and Performance in the SPIN Operating System� In Proceedings of the Fifteenth ACM

Symposium on Operating Systems Principles� Copper Mountain� CO� December �����

�Campbell � Tan ��� Campbell� R� H� and Tan� S��M� �Choices� An Object�Oriented Multimedia Operating System� In
Proceedings of the Fifth Workshop on Hot Topics in Operating Systems� pages ����
� Orcas Island� WA� May
�����

�Chambers et al� ��� Chambers� C�� Dean� J�� andGrove� J� Vortex Compiler� An OptimizingCompiler for Object�OrientedLan�
guages� University of Washington� http���www�cs�washington�edu�research�projects�cecil�www�cecil�home�html�
December �����

�Gupta ��� Gupta� R� A Fresh Look at Optimizing Array Bound Checking� In Proceedings of the ACM SIGPLAN ���

Conference on Programming Language Design and Implementation� volume ��� pages �����	�� June �����

�Gupta ��� Gupta� R� Optimizing Array Bounds Checks Using Flow Analysis� ACM Letters on Programming Languages and

Systems� ���������� March �����

�Hsieh et al� ��� Hsieh� W� C�� Fiuczynski� M� E�� Garrett� C�� Savage� S�� Becker� D�� and Bershad� B� N� Language Support
for Extensible Systems� In First Annual Workshop on Compiler Support for System Software� January �����

�Kolte � Wolfe ��� Kolte� P� and Wolfe� M� Elimination of Redundant Array Subscript Range Checks� In Proceedings of the

ACM SIGPLAN ��� Conference on Programming Language Design and Implementation� pages ������	� June
�����

�Nelson ��� Nelson� G�� editor� Systems Programming with Modula��� Prentice Hall� �����

�Rivest ��� Rivest� R� The MD� Message�Digest Algorithm� Request for Comments ����� Internet Engineering Task Force�
April �����

�Seligmann � Grarup ��� Seligmann� J� and Grarup� S� Incremental Mature Garbage Collection Using the Train Algorithm�
In Proceedings of ECOOP���� Ninth European Conference on Object�Oriented Programming� volume ���� pages
�������� �����

�Sirer et al� ��� Sirer� E� G�� Fiuczynski� M�� Pardyak� P�� and Bershad� B� N� Safe Dynamic Linking in an Extensible Operating
System� In First Annual Workshop on Compiler Support for System Software� January �����

�Small � Seltzer �
� Small� C� and Seltzer� M� VINO� An Integrated Platform for Operating System and Database Research�
Technical Report TR�����
� Harvard University� ���
�

�Small � Seltzer ��� Small� C� and Seltzer� M� A Comparison of OS Extension Technologies� In Proceedings of the 	��
 Winter

USENIX Conference� San Diego� CA� January �����

�Stallman ��� Stallman� R� M� Using and Porting GNU CC� Technical report� Free Software Foundation� Cambridge� MA�
�����

�Stroustrup 	�� Stroustrup� B� Adding Classes to the C Language� An Exercise in Language Evolution� Software�Practice

and Experience� ����
��������� February ��	��


