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1 Introduction

We are using Modula-3 to write an operating system called SPIN at the University of Washington [Ber-
shad et al. 95]. The primary goal of the system is to allow applications that require high performance
system services to customize the operating system for a particular task. The system provides a core service
infrastructure that provides threads, virtual memory, and device management together with an extension
facility that allows application-specific services to be dynamically downloaded into the kernel. We are using
the system to develop internetworking services, HTTP servers, video servers, and a general purpose UNIX
environment.

When we began the design of the SPIN operating system, we sought a language that would help us inte-
grate untrusted extension code into the kernel. We converged on Modula-3 as the implementation language
for both extensions and the core system. Modula-3 is an ALGOL-like, typesafe, high-level programming lan-
guage that supports interfaces, objects, threads, exceptions and garbage collection. There is a well-defined,
safe subset of Modula-3 which allows untrusting clients to securely share the same address space. Most of
the SPIN kernel and extensions, which compromise about 40,000 lines of Modula-3 code, are written in this
safe subset. The kernel also contains C and assembly code which we have liberally borrowed from the sources
for Digital UNIX. Our borrowed sources implement platform specific services; such as device drivers, and
are available to the Modula-3 component of the system through about 80 functions in a dozen interfaces.

Despite the fact that the primary reference for Modula-3 is titled “Systems Programming with Modula-3,”
[Nelson 91] we have found that the general systems community has remained skeptical of the language.
Instead, they hold to languages such as C and C++ which offer little more than an environment for advanced
assembly language programming. We believe that this skepticism is due to some misplaced concerns and
misunderstanding that surround Modula-3, rather than any limitations of the language. The purpose of this
paper is to help clear up some confusion about developing software with Modula-3. In particular, we will
concentrate on using Modula-3 to write an operating system, which is where our primary experience lies.

The key point with which we hope to leave the reader is that there is a fundamental difference between
a programming language, and a particular implementation of that language. For example, there are many
different versions of the C compiler and its runtime utilities. In the 80’s though, BSD UNIX’s pcc and 1ibc.a
essentially defined the C programming language that many people use today. Gradually, improvements in the
compiler and the libraries allowed people to hold C up as the “language to be beat” in terms of expressiveness
and performance. A similar evolution occurred with C++4, for which the first implementation (ATT’s ¢front)
[Stroustrup 83] substantially underperformed C. Over time, though, the compiler and runtime improved,
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together with people’s understanding about what they could and could not do efficiently with the language
and 1ts default runtime environment. Today, commercial C++ compilers generate code with similar quality
to C compilers, and programmers rarely complain about the implementation of the language (although
complaints about the language itself litter the Usenet bulletin boards).

Today, the Modula-3 programming language is widely considered synonymous with its primary reference
implementation from Digital’s Systems Research Center (DEC SRC). The DEC SRC implementation is a
publicly available, highly portable Modula-3 system that consists of a compiler front-end, a code-generator,
a set of runtime services, standard libraries, a debugger, and a distributed object library. The compiler
front-end translates Modula-3 source code into GNU RTL intermediate representation[Stallman 90], and
a gcc based code generator emits object code directly. The goals of the DEC SRC implementation have
always been portability (the system runs on 12 different architectures and 25 different operating systems)
and functionality (the system’s runtime services consist of over 230 interfaces).

Although the DEC SRC environment excels at many tasks, there are several at which it comes up short.
Unfortunately, it has been these shortcomings of the implementation that have caused many in the systems
development community to perceive the language as inadequate for use in a serious development environment.
Since we seriously intended to develop a production quality operating system, these perceptions caused us
concern. Consequently, before choosing Modula-3 as our system development language, we compiled a list
of shortcomings based on the “community’s collective wisdom.” In other words, we scanned the discussion
lists and tried to understand what people were saying. In particular; the most common concerns we saw
about Modula-3 were:

1. Modula-3 programs are slow.

2. Modula-3 programs take too long to compile.

3. Modula-3 programs require too much memory.

4. Modula-3 threads are slow.

5. Modula-3 checked runtime errors result in program termination.
6. Modula-3 can not be used in a mixed-language environment.

7. Modula-3’s dynamic storage management is expensive.

In building SPIN, we came to understand that these were concerns primarily about the system’s runtime
environment, and secondarily about the DEC SRC compiler. In the rest of this paper, we address each
concern and describe how we have dealt with it in our system.

We hope that the reader does not interpret our discussion as being a resounding endorsement for the
Modula-3 language. Indeed, we have found a few places where the language is deficient in the construction
of large, extensible, safe systems. Most notably, these deficiencies arise in the use of operations that “ought”
to be safe (vis a vis the language’s definition) but are not, or are safe but ought not to be. For example,
the language does not allow for safe casting operations, whereby a data structure is represented as a union
of possible types, even though the cast would not create a situation that might violate typesafety. In a
companion paper [Hsieh et al. 96] we describe some of the changes that we have made to the language and
its compiler in order to satisfy these types of problems.

2 Evaluating the concerns

We discuss the major concerns about Modula-3 from several angles. Where the concern is related to per-
formance, we present data that shows the concern is not intrinsic to the language, but relevant only to the
reference implementation. Where the concern is related to functionality, we describe how we have modified
the standard reference compiler or the runtime to provide the functionality whose absence or unacceptability
is implied by the concern.



2.1 Modula-3, code quality, and performance

There are two aspects to the concerns about the quality of code generated from Modula-3. The first has
to do with the cost of ensuring safety within a compiled module, and the second has to do simply with the
quality of the compiler.

2.1.1 Safety and Compiler-Generated Dynamic Checks

Modula-3’s safety guarantees require that the compiler ensure that there are enough runtime checks in place
to prevent a violation of typesafety from occurring within a module that is explicitly marked as SAFE. Most
checks can be performed statically when the program is compiled. Ensuring the safety of array accesses,
however, can require dynamic checks that can impact the performance of array intensive applications.

The DEC SRC Modula-3 compiler is extremely conservative about runtime checks for array bounds
violations, prefacing every index operation with a check against the bounds. Moreover, the front end is not
very aggressive in the RTL that it passes on to gcc, so opportunities for removing some of these runtime checks
through optimization are lost. As mentioned in the introduction, this is not an issue with the language, but
with the implementation of the language. Techniques to eliminate unnecessary range checks are well-known
within the compiler community[Gupta 90, Gupta 93, Kolte & Wolfe 95], and are clearly applicable to Modula-
3. The Vortex research compiler [Chambers et al. 95], being developed at the University of Washington,
performs redundant range check elimination among other optimizations and typically eliminates 30-90% of
range checks in our benchmarks.

In practice, we have not had incentive to write code fragments in any language other than Modula-3
strictly to avoid inefficiencies in generated code. In a few places, we have retreated to assembly language
(the system’s bcopy, bzero, and checksum routines), but these functions are generally written in assembly
even in systems built using C.

2.1.2 Compiler Quality

Modula-3 is a straightforward imperative language, and with few exceptions, there is little about the language
that makes it more difficult to compile efficiently than other languages such as C. However, like other
languages, the quality of the compiler has a direct impact on the quality of the generated code.

Benchmark | C M3 Unsafe M3 Safe
GCC | DEC SRC | Vortex | DEC SRC | Vortex
MDs5 17.0 17.5 17.8 21.4 18.5
hotlist 15.3 15.3 15.4 15.3 15.4
[ld 43.5 47.0 50.7 51.1 53.7
Richards 99.0 87.8 88.6 88.8 91.3

Table 1: Comparison of GCC, the DEC SRC Modula-3 compiler and the Vortex based Modula-3 compiler. Times are in
seconds and were gathered on a dedicated DECStation 4000/400 133 MHz with 64 MB main memory. The mean of 10 timings
is reported.

Table 1 illustrates the difference in code quality that results when different compilers generate semanti-
cally equivalent executables. The C versions of the benchmarks offer no safety guarantees. Safe Modula-3
measurements, on the other hand, include compiler generated dynamic checks wherever necessary which en-
sure that all memory accesses are legitimate. The unsafe Modula-3 measurements, which omit all dynamic
checks, are included to demonstrate the baseline performance of the compilers in relation to GCC.

Our benchmarks consist of common operating system tasks and typical operating system extensions [Ber-
shad et al. 95, Campbell & Tan 95, Small & Seltzer 94]. MDJ5 is a digital signature algorithm [Rivest 92]
implemented in Modula-3. It i1s very array intensive which results in the DEC SRC compiler placing 10
range checks in its inner loop. However, redundant bounds check elimination in Vortex is able to eliminate
all but one of these checks and reduce the performance difference with C to less than 10% for safe code. Lid
is a logical disk simulator that is similarly array intensive. Despite this fact, the overhead of dynamic bound
checks due to safety is roughly 5-8% of the total execution time. We found that the quality of code gener-
ated for arithmetic operations such as modulus had a much greater impact on performance than dynamic



checks. Hotlist 1s a page eviction simulation, where the benchmark keeps track of an LRU list of eviction
candidates and traverses the list repeatedly in response to page fault events. In this instance, Modula-3 can
guarantee safe behaviour without recourse to any dynamic checks. Hence the C and Modula-3 versions of
the benchmark have essentially identical performance. MDJ, hotlist and lld were contributed by Small [Small
& Seltzer 96]. Richards is an operating system simulator with a synthetic workload of process creation and
termination. The coding style encouraged by Modula-3 allows the compiler to produce better code for a
commonly executed switch statement, resulting in higher performance than C, even for safe code.

From these results, other measurements [Small & Seltzer 96], and our experience with the SPIN kernel,
it seems evident that Modula-3 compiler technology is currently comparable to that of C, yet offers stronger
guarantees about program safety.

2.2 Modula-3 compiler execution time

The DEC SRC Modula-3 compiler consists of a platform-specific back end and a mostly platform-independent
front end. The back end of the Modula-3 compiler is a slightly modified version of the GNU optimizing
compiler (based on gee 2.5.7). The front end of the compiler is written in Modula-3, and produces a textual
representation of the compiled program in GNU’s Register Transfer Language (RTL). It then forks off the
back end which reads the RTL from the file system to generate a standard COFF object file.

Because of the amount of machinery involved in each compilation, we initially had concerns that the
compile phase of the “edit/compile/reboot” cycle would be dominated by compile/link time. We have all
had to work with systems where the turnaround time for a simple one-line kernel change was 10 to 20
minutes, and we did not want to repeat that experience. As it turns out, we are able to iterate through
the development cycle quite rapidly due to Modula-3’s support for incremental recompilation. Once our
kernel has been built, changes to individual files can be compiled and linked into the kernel image in under
a minute. Moreover, our support for dynamic linking allows us to safely load new code modules into the
kernel without having to perform a complete relink and reboot. Although a full kernel build takes about 15
minutes, we do it rarely.

2.3 Modula-3 and code size

Our next concern had to do with the size of Modula-3 executables. Starting with the initial versions of the
reference implementation, the language had a reputation of requiring massive executables. Indeed, using
the DEC SRC reference implementation on the Alpha, the simplest client is almost 500 KB when statically
linked with debugging enabled. This massive size is due to three factors: the language’s requisite core services
such as garbage collection and exception handling, the exztra services that are thrown in “for free” such as
streaming readers and writers, and the fact that the runtime does not support dynamic linking and sharing
of code and data.

We were able to strip out 25% of the runtime simply by identifying those portions which were not needed
by the operating system. We also created a dynamic linking facility [Bershad et al. 95, Sirer et al. 96]
that eliminates multiple copies of the runtime by allowing clients access to shared code and data. As a case
in point, our HTTP server extension consists of 392 lines of Modula-3 code and consumes 9KB of memory
(BKB text + 4KB data).

2.4 Modula-3 and threads

A fourth concern of ours was the cost associated with using the Modula-3 thread and synchronization services.
Since threads are a fundamental component of our operating system, and since synchronization is a critical
service required within an operating system, we initially felt that it would be necessary to abandon the
language’s thread interface and introduce one of our own. We were reluctant to do this from a practical
standpoint, since the Modula-3 threads interface is part of the language definition. In addition, we wanted
our kernel programming environment to be as “vanilla” as possible to shorten the learning curve of people
trying to develop code for the system.

Indeed, it is true that the standard Modula-3 threads package that comes with the reference implemen-
tation performs poorly. For example, on a 133 Mhz DEC Alpha, to spawn and terminate a new thread takes



over 700 pusecs. While slow, this is the level of performance that can only be expected from any threads
package that implements its services entirely at user-level on top of the UNIX process model. Intrinsically,
thread performance is tied much more to the particular implementation method rather than the interface
that is exported to the clients.

As part of the initial development of our kernel, we reimplemented the Modula-3 thread, scheduler and
synchronization services directly on top of a lightweight kernel threading interface called strands [Bershad
et al. 95]. The strands interface allows thread packages and schedulers to be tightly integrated with each
other as well as with their clients. In comparison to the 700 usecs required to create a thread on top of a
UNIX process, a Modula-3 thread based on a SPIN strand can be created and terminated in 22 psecs. From
this, and from other low-overhead thread operations that we perform using the Modula-3 threads interface,
we find no evidence of any problem with the interface itself.

2.5 Modula-3 failure semantics

Modula-3 allows programmers to raise and catch exceptions during the course of program execution. If a
thread raises an exception, the runtime walks through the raising thread’s stack looking for a handler to
catch the exception. If a handler is found, control is passed to it. If not, the thread is said to have committed
a checked runtime error, for which the language leaves the system’s behavior unspecified. In the reference
implementation from DEC SRC, checked runtime errors result in program termination; there is no way for
a thread to recover from its own, or another’s checked runtime error.

For the SPIN operating system, as well as many other environments where programmers are willing to
work hard to ensure liveness, the reference implementation’s interpretation of the semantics of a checked
runtime error is inadequate. Consequently, we changed the runtime system’s implementation of exceptions,
within the specifications of the language, such that users are notified of runtime failures through language
exceptions. With this addition, code can implement failure recovery by installing an exception handler for
runtime exceptions and taking remedial action. In the event that a thread fails to do so, another thread can
collect the exception delivered to the failed thread.

2.6 Using Modula-3 in a mixed language environment

As previously mentioned, our kernel relies on some low level platform-specific services that we borrow from
the sources of Digital UNIX. These sources are written in C, and therefore directly highlight the concern that
interfacing Modula-3 to other languages can be difficult. There are three aspects to this difficulty: safely
calling foreign code from Modula-3, calling Modula-3 code from foreign code, and passing data between
them.

In the case of calling out from Modula-3, we found that type mismatch errors could occur on the language
boundary, since type information is typically not propagated between languages. Such a mismatch could
potentially be used to circumvent the typesafety of Modula-3. In particular, the reference implementation
defines a pragma that allows an interface to refer to a function written in a foreign language such as C.
In the reference implementation, this pragma is permissible in safe interfaces, which allows untrusted code
to provide direct access to C functions or data structures of arbitrary type. Since the compiler cannot
enforce type-checking across the language boundary and has to trust the user-supplied type definition for
external symbols, there is an unacceptable safety risk. Consequently, we modified the compiler so that the
externalizing pragma could only be used within unsafe interfaces.

To call from C to Modula-3, we modified the front end of the compiler to generate C header files for
Modula-3 interface files. In this way, any function exported via a Modula-3 interface can be called directly
from C.

We believe that the concern about passing data between Modula-3 and other languages stems from the
fact that the Modula-3 heap is automatically managed in ways that are not consistent with the explicit
storage management of C. For example, the DEC SRC reference implementation uses a copying garbage
collector. Consequently, if a Modula-3 program passes a collectible reference to C, and C stores the reference
in it’s own uncollectible heap, the collector might copy the object leaving C’s reference dangling. Modula-3
provides both collectible and uncollectible heap space (traced and untraced), so this problem can be avoided
by allocating shared objects from the appropriate heap. Sometimes, though, it is not possible to predict



whether or not a reference will be passed across the language barrier at the time it is allocated. Indeed,
this property is something that ought to be hidden within the modules that communicate with the foreign
language. For this reason, we introduced the notion of a Strong Reference, which is an object allocated from
the traced heap that the collector should consider as temporarily uncollectible and immovable. In this way,
an object can be “strong reffed” before it is passed to C.

To pass data from a foreign language (typically C, although occasionally assembly language) to Modula-3,
we pass the data by reference from the foreign language, and follow one of two strategies on the Modula-3
side. We either declare the in parameter as a reference to a record stored on the uncollectible heap (untraced),
or we declare it as variable parameter (for which the compiler generates code that automatically dereferences
the in parameter). Neither approach has been particularly complicated to use.

2.7 Dynamic storage management

Lastly, we were concerned that the overhead of dynamic storage management in Modula-3 would be pro-
hibitive. We anticipated two types of overhead here: allocation and collection. Allocation overhead is that
incurred when a thread creates a new object and there is plenty of free space in the heap. Collection overhead
is that incurred in order to ensure free space.

With respect to allocation, there is no fundamental reason why Modula-3’s allocation overhead should
be any larger than that of a standard C malloc package, since both are implementing the same service:
locating a block of memory having a specific size from a free list. Nevertheless, we have measured allocation
overheads on the Alpha using the DEC SRC reference implementation that are roughly four times higher
than for malloc. The reason for this is simple: the DEC SRC allocator was not built to be fast (for example, it
maintains statistics about memory usage on its critical path). We were able to cut down allocation overhead
by almost a factor of two simply by removing code that had nothing to do with allocation. We are presently
working on a complete reimplementation of the allocator for which overhead will be comparable to C’s. In
any event, allocation overhead has not been a serious problem in the system we’ve built so far because we
avoid allocation altogether on critical paths such as interrupt handling and thread management. In the few
instances where allocation latency is an inherent component of the critical path, e.g. thread fork, we use the
common technique of preallocation and caching of initialized objects to shift the performance penalty to less
critical periods.

The second concern we had about dynamic storage management was collector overhead, specifically the
pauses incurred by major collections. Currently, we use a single-threaded collector which requires that
all other concurrent execution, including interrupt handlers, be suspended while it is activated to avoid
mutations of the heap. A typical collection takes about 100 ms. on our platform, which introduces perceptible
delays into the system.

We are dealing with the collector overhead in two ways. The first is to use a better collector. We
are examining concurrent and incremental garbage collection techniques [Seligmann & Grarup 95, Appel
et al. 88] to reduce disruptive system pauses. While a better collector can reduce the pause times, it will
not directly address the overhead problem. If garbage is created, there is going to be a penalty to clean
it up. Consequently, we also adopt a “pro-recycling” attitude within the system, and encourage clients
to reuse objects they have allocated without requiring that they be collected and reallocated. As long as
some protocol and trust is established between cooperating modules, objects of a given type can be shared
and reused without collector or allocator involvement. High-throughput subsystems that deal with large
quantities of data, such as device drivers and the network stack, implement a notification scheme by which
they indicate when a particular item can be reused by their clients. For example, our video server allocates a
buffer, fills it in with data from secondary storage, and invokes the network stack by calling UDP.Send. The
buffer makes its way through the stack down to the device driver, which eventually raises the MBuf.Freed
event to indicate that the buffer can be reused by the application. The video server can then recycle this
packet to hold other data, without having to wait for a collection and an allocation. Consequently, client
working sets remain bounded in steady-state, decreasing pressure on the garbage collector.

Even though we reduce collector involvement in our system, the collector still serves two important
purposes: 1t allows safe reuse of memory between unrelated applications, and it acts a safety net for extensions
that are unwilling to follow the memory recycling protocol. Nevertheless, we realize that our current situation



with respect to the collector is not ideal — it is controlling us, rather than we it. We intend to dedicate more
effort to this problem with the expectation that we can reduce collection overhead to an acceptable level.

3 Summary

In this paper, we have discussed the use of Modula-3 in the construction of an operating system. We have
shown that criticisms about a programming language can be misplaced, and are often better directed towards
a particular implementation of that language or its runtime. Moreover, we have shown that 1t is possible to
construct a high performance implementation of both. We conclude that the safety of Modula-3 combined
with its support for systems programming make the language an ideal choice for systems programming. Not
only does Modula-3 prevent most common programming errors by virtue of its typesafety, it offers a variety
of powerful tools that allow the programmer to tackle a range of systems programming tasks. We have found
the safety of the language, as well as its data hiding properties, generic interfaces and object support to be
effective in developing a high-performance, modular system and its extensions.
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