
1 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

Setting-up Kernel Development Host

1. Setting-up Kernel Development Host

a. Introduction

Although originally developed first for 32-bit x86-based PCs (386 or higher), today

Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and UltraSPARC,

Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell, IBM S/390,

MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS, Xtensa, Tilera

TILE, AVR32 and Renesas M32R architectures.

Kernel Development is bit different from usual application development like you are

building a specific application in unique language for example java, C sharp, C++, C

etc. You just learn the language then implement the idea. Before building any service

for kernel or device driver for a peripheral, kernel development requires that you have

some skills, additional to language. You must know the overall structure of kernel,

kernel system call interface, kernel APIs and underlying hardware. You must know

how to build your own customize kernel, how to debug kernel oops (kernel

exceptions), kernel source code hierarchy that where you put your own custom code.

Kernel is the core part of Operating System, so these are the basic requirements for

kernel development because without it you may crash your system.

b. Linux Kernel

The history of Linux began in 1991 with the commencement of a personal project by

a Finnish student, Linus Torvalds when he was studying at University of Helsinki, he

was using a version of UNIX operating system called “Minix”. Linus and other users

sent requests for modifications and improvements to Minix's creator, Andrew

Tanenbaum, but he felt that they weren't necessary.

That's when Linus decided to create his own operating system that would take into

account users comments and suggestions for improvements. What is kernel

2 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

basically? Without going into detail, kernel tells the big chip that controls your

computer to do what you want the program that you're using to do. Without a kernel,

operating system does not exist. Linux kernel has received contributors from

thousands of programmers. Linux rapidly accumulated developers and users who

adapted code from other free software projects for use with the new operating

system. These people started to offer their help. The version numbers of Linux

getting higher and higher. Developers began writing drivers for different video cards,

sound cards and other gadgets inside and outside your computer could use Linux. As

per the statistics of 2009 the Linux Kernel comprised of 11,560,000 LOCs in about

27,900 files. About 10,900 LOCs were added in Linux kernel every day, 5,500 LOCs

were removed from Linux kernel every day, and 2200 LOCs were modified in Linux

kernel every day.

Linux, at first, was not for everybody. Later on, companies like Red Hat made it their

goal to bring Linux to the point where it could be installed just like any other operating

system; by anyone who can follow a set of simple instructions, and they have

succeeded. Today, Linux can be installed on a home PC as well as a network server

for a fraction of the cost of other companies' software packages. Its main reason is to

provide facilities to the user and developer so that more and more people could

interact with this free open source project. Linux has proven to be a tremendously

stable and versatile operating system, particularly as a network server.

c. Linux Kernel Versions

 Linux Kernel comes in two flavors: Stable and development. Stable kernel is

suitable for development and released as product. On the other hand, development

kernel is where new features are tested and solutions provided. Linux kernel has

numbering scheme to distinguish between stable and development kernel. With time

the meaning of this scheme changed as Linus uses it. However, at the time of this

writing 5.3.7.1 is the latest Linux kernel. Where first number represents the Kernel

version, second is major revision, third is minor revision and the optional fourth

number is patch number. The latest stable Linux kernel at the time of this writing is

5.3. You can download source from https://www.kernel.org

3 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

d. Linux Distributions

 Most of the Linux distributions are GNU/Linux. It means the Linux kernel bundled

with numerous utilities, programs, packages, libraries, tools from GNU to form a

complete Operating System. Linux just refers to kernel (a core part of Operating

System). Orderly packaging of different utilities, programs or tools makes different

distributions like Ubuntu, Kali, Gentoo, Slackware, Red Hat, Fedora, OpenSUSE,

Debian, CentOS etc. The Operating System that we are using is Ubuntu 14.0, having

Linux kernel. It is installed in our virtual environment (virtual box).

e. Online Resources

www.kernel.org
 The main repository for Linux kernel is www.kernel.org. Here you can find all

released kernel versions.

www.lkml.org
 The Linux Kernel Mailing List (LKML) is the forum where developers debate on

design issues and decide on future features. You can find a real-time feed of the

mailing list at www.lkml.org. LKML acts as the thread that ties all these developers

together.

www.lwn.net
 lwn stands for Linux weekly news. It is the place where you find the latest news

from the Linux kernel developer community.

www.lxr.free-electrons.com
 lxr stands for Linux Cross Reference. It is a web-based indexer of Linux kernel

source code. You can find any function and identifier definition in the source code by

just one click.

4 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

2. The architecture of Linux kernel source
The root of the kernel source code consists of following folders. Students are suggested

to download the Linux kernel and spend some time having a birds eyeview of the

contents of all these folders.

arch (16.3%) It contains all of the architecture specific kernel code (30 dirs). It has

further subdirectories, one per supported architecture, e.g., i386, x86_64,

alpha, mips, sparc, powerpc, arm, arm64, blackfin…

block (0.1%) This folder holds code for block-device drivers (46 files). Block devices

are devices that accept and send data in blocks. Data blocks are chunks of

data instead of a continual stream.

crypto(0.4%) This folder contains the source code for many encryption algorithms.

documentation

(2.8%)

This folder contains plain-text documents that provide information on the

kernel and many of the files. If a developer needs information, they may

be able to find the needed information in here. Also available on

http://kernel.org/doc

drivers(57%) This directory contains the code for the drivers, a software that controls a

piece of hardware. It contains subdirectories like block, char, cdrom, pci,

scsi, net, sount, …

fs (5.5%) This is the FileSystem folder. All of the code needed to understand and

use filesystems is here.

include (3.5%) This directory contains most of the include files needed to build the

kernel code. It too has further subdirectories including one for every

architecture supported.

init This directory contains the initialization code for the kernel and it is a

very good place to start looking at how the kernel work. For example, on

5 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

an intel based system, the kernel starts when grub has loaded the kernel

into memory and passed control to it, after doing some architecture

specific things in /arch/, it jumps to the main() routine in init/main.c

ipc IPC stands for Inter-Process Communication. This folder has the code

that handles the communication layer between the kernel and processes

kernel (1.2%) The code in this folder controls the kernel itself.

lib(0.5%) This directory contains the kernel’s library code. The architecture

specific library code can be found in arch/*/lib/.

mm (0.5%) This directory contains all of the memory management code. The

architecture specific mm management code lives down in arch/*/mm/,

for example the page fault handling code is in mm/memory.c and

memory mapping and page cache code is in mm/filemap.c. The buffer

cache is implemented in mm/buffer.c and the swap cache in

mm/swap_state.c and mm/swapfile.c

Scripts (0.4%) This folder has the scripts needed for compiling the kernel. It is best to

not change anything in this folder. Otherwise, you may not be able to

configure or make a kernel.

net (4.3%) The network folder contains the code for network protocols. This

includes code for IPv6 and protocols for Ethernet, wifi, bluetooth, etc.

Virt (0.1%) This folder contains code for virtualization, which allows users to run

multiple operating systems at once.

Usr (0.1%) The code in this folder creates those files after the kernel is compiled.

security (0.3%)

This folder has the code for the security of the kernel. It is important to

protect the kernel from computer viruses and hackers. Otherwise, the

Linux system can be damaged.

6 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

Linux Kernel Compilation
1. Preparing your work environment

If you know that how to build a custom kernel it means you can instruct your kernel that

how it will act or react. You can add your own new system call or a service. You can

define your own Heap manager, your own scheduler scheme, your own memory

management algorithms. You can optimize the kernel by removing useless drivers to

speed up boot time. Create a monolithin instead of a modularized kernel. You can add a

new hardware support. Last but not the least, it gives you an inside look and you get

familiar with different source files, parameters and overall structure of the kernel.

I am currently running Kali Linux 4.19.0 (guest OS with 4GB RAM) in Virtual Box 5.2.26

on my Apple machine (2.9 GHz Intel core i7 with 16 GB DDR3 RAM) running Mac OS X

Mojave 10.14.1 (host OS).

2. Packages you need

For Kernel compilation you need to have these packages installed on your system,

namely gcc, make, bc, build-essential, libelf-dev, libssl-dev,

bison, flex, initramfs-tools, git-core, and libncurses5-dev. To

install these packages, use Advanced Packaging Tool available on all Debian

distributions. (Do view the file /etc/apt/sources.list which contains the names and links

of packages to install) The general syntax for installing a package using apt is:

$ sudo apt-get install <space separated packageName(s)>

Before installing the packages, first update apt and after installation upgrade.

$ sudo apt-get update

$ sudo apt-get install gcc

$ sudo apt-get install build-essential

- - -

$ sudo apt-get upgrade

7 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

Note: To check which package contains what all commands or to check which

shell command become available after installation of which package you can use

dpkg command (Debian package manager)

$ which ls

/bin/ls

$ dpkg –s /bin/ls or (apt-file search /bin/ls)

coreutils: /bin/ls

$ dpkg –S coreutils or (apt show coreutils or apt-cache show coreutils)

Package: coreutils

Installed-Size: 6,164 kB

Original-Maintainer: Michael Stone <mstone@debian.org>

Version: 8.21-1ubuntu5.1

Replaces: mktemp, timeout

Pre-Depends: libacl1 (>= 2.2.51-8), libattr1 (>= 1:2.4.46-8),

libc6 (>= 2.17), libselinux1 (>= 1.32)

Homepage: http://gnu.org/software/coreutils

Bugs: https://bugs.launchpad.net/ubuntu/+filebug

Description: GNU core utilities. This package contains the

basic file, shell and text manipulation utilities which are

expected to exist on every operating system. Specifically,

this package includes: cat chgrp chmod chown chroot cp cut

date dd df dir dirname du echo env expr false flock groups

head hostid id join link ln logname ls mkdir mkfifo mknod

mktemp mv nice nl od paste pathchk printenv printf pwd

readlink rm rmdir seq sleep sort split stat stty sum sync tail

tee test timeout touch tr true truncate tty uname uniq unlink

users wc who whoami yes

8 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

3. View the existing Kernel Information
Before proceeding, lets visit the existing kernel components on your system one by

one

3.1 Check the details of existing kernel version by following command:
$ uname -a

Linux kali 4.19.0-kali1-amd64 #1 SMP Debian 4.19.13-1kali1

(2019-01-03) x86_64 GNU/Linux

$ uname -r

4 .19.0-kali1-amd64

3.2 There is quite a useful stuff lying in the /boot directory. The four files of our

interest are:
o vmlinuz: The compressed, bootable kernel image.

On Linux systems, vmlinuz is a statically linked executable file that contains

the Linux kernel in one of the object file formats supported by Linux.The

letter z at the end denotes that it is compressed.
o initrd.img: The initial RAM disk; an ASCII cpio archive, an early root

filesystem that allows your kernel to bootsrap and get essential device drivers

to get the final, official root filesystem
o config: An ASCII text file that contains the configuration parameters for the

kernel
o System.map: An ASCII text file that contains Symbol table used by kernel

$ ls /boot/

vmlinuz-4.19.0-kali1-amd64

initrd.img-4.19.0-kali1-amd64

config-4.19.0-kali1-amd64

System.map-4.19.0-kali1-amd64

Each kernel installed on your system will have a corresponding directory of

loadable modules to go with it. This is what it looks like on my system at the

moment:

9 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

$ls /lib/modules

3.13.0-43-generic
3.3 Last essential thing in booting a new kernel is that you need to add an entry for

your new kernel into the GRUB boot loader configuration file on your system. On

Ubuntu, it is /boot/grub/grub.cfg. View the contents of this file. Remember

once you are done installing the new kernel, you have to run the appropriate

utility to add entries for it to your GRUB config file; otherwise, GRUB will never

know about it and you’ll never be able to boot it.
4. Steps in Installation of Linux Kernel

§ Download the kernel source

§ Configure the kernel

§ Compile/Build the kernel

§ Install the kernel

§ Update boot loader and reboot

§ Verify your installation
Note: This document must be read in conjunction with the README file that you can find in the

toplevel kernel source directory.

4.1 STEP-I: Download Linux Kernel Source Code

To download the source code you can visit the www.kernel.org web site and get the

stable kernel release. You can also use following command on the shell to download

the current linux kernel repository into your pwd, by cloning its reference git tree, the

one managed by Linus Torvald either using the git or the http protocol.

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

$ git clone http://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

I have downloaded linux-5.3.7.tar.xz from kernel.org in my ~/Download/

directory. The size of tar ball is 104 MiB

$ tar xvf linux-5.3.7.tar.xz

10 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

It will create a directory named linux-5.3.7 and extract all files to it. Now change

your current working directory to your extracted source directory

$ cd ~/Download/linux-5.3.7

$ ls

arch CREDITS drivers include Kbuild lib mm tools

usr REPORTING-BUGS securit block crypto firmware

init Kconfig MAINTAINERS net samples sound virt COPYING

Documentation fs ipc kernel Makefile README scripts

To get a view of the size of the linux kernel you can run following commands (if you

have cloned the kernel from a git repository), which tells you the number of files in the

Linux kernel source:

$ git ls-files | wc -l

65695

Do go through Documentation directory. For example, a must read is the

Documentation/process/Codinng.rst file, which contains Linux Kernel Coding

Style. One should also install the cscope tool to examine the Kernel code. cscope is

an interactive, screen-oriented tool that allows the user to browse through C source files

for specified elements of code.

Note: Now for the rest of this tutorial my current working directory will be linux-5.3.7

and from now on-wards I will use it as command prompt in all commands below. But

before proceeding execute the following command in the top-level kernel source

directory to get an insight of different targets in the top level Makefile

$ make help | less

Cleaning targets:

clean - Remove most generated files, keeping config and enough build support

to build external modules

mrproper - Remove all generated files + config + various backup files

distclean - mrproper + remove editor backup and patch files

Configuration targets:

11 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

config - Update current config utilising a line-oriented program

menuconfig - Update current config utilising a menu based program

xconfig - Update current config utilising a QT based front-end

gconfig - Update current config utilising a GTK based front-end

oldconfig - Update current config utilising a provided .config as base

localmodconfig - Update current config disabling modules not loaded

silentoldconfig - Same as oldconfig, but quietly, additionally update deps

defconfig - New config with default from ARCH supplied defconfig

savedefconfig - Save current config as ./defconfig (minimal config)

allnoconfig - New config where all options are answered with no

allyesconfig - New config where all options are accepted with yes

randconfig - New config with random answer to all options

tinyconfig - Configure the tiniest possible kernel

Other generic targets:

all - Build all targets marked with [*]

- - -

4.2 STEP-II: Configure the Kernel

Configuring the kernel involves selelcting which features you want to built into the kernel

image, which features you want to built as loadable modules, and which features you

want to omit entirely. The configure process will finally create a .config script for

building the kernel. The .config file contains the configuration information (which has

information about the features to be installed) of the kernel to be compiled. There are

different methods to configure Linux kernel, few of them are:

§ make config (Command Line configuration method)
It makes sure all of the dependencies for the rest of the

build and install process are available, and finds out

whatever it needs to know to use those dependencies

§ make oldconfig (Recommended for beginners)
Make oldconfig takes the .config and runs it through the

rules of the Kconfig files and produces a .config which is

consistant with the Kconfig rules.

§ make menuconfig (Based on libncurses5-dev package)
It starts a terminal-oriented configurationtool

12 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

§ make xconfig (GNOME toolkit interface)

xconfig is short for the 'xconfig' target for the

Linux Makefile. It is a graphical Linux compilation

utility, which uses Qt

§ make localmodconfig
compile only the loaded modules in the running kernel

Option 1

The best configuration method for beginners (who do not know what a specific

parameter will actually do?) is to use your current kernel configuration file in the /boot/

directory. Just copy the configuration file from /boot/ folder to top of Linux source

folder with ".config" name, and then run the make oldconfig command.

$ cp /boot/config-3.13.0-43-generic ./.config

$ yes ‘’ | make oldconfig (two single quotes, no space in between)

Without piping, the above command generates configuration file for your kernel but

again ask you to enter right choice for some parameters. This is because of the

configuration file you use is not up-to-date and make ask you to enter choices for new

parameters. If you know, you enter the choice but if you are beginner you simply hit the

ENTER to take the default option.

Option 2

To ensure we only compile the modules that are currently running on the kernel we use

 $ yes ‘’ | make localmodconfig

Using this option, the compilation time of the kernel is reduced to a great extent (from

around 5 hours to 1 hour or may be less) as a lot of the modules in the configuration file

are usually not running. This only compiles the currently running modules make the

compilation process a lot quicker.

After this step is completed (using any of the above two options) you can see two new

files in the current directory.config and.config.old. Must view the file for different

configuration parameters.

13 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

$ less .config

Automatically generated file; DO NOT EDIT.

Linux/x86 5.3.7 Kernel Configuration

Compiler: gcc (Debian 9.2.1-8) 9.2.1 20190909

CONFIG_CC_IS_GCC=y

end of Kernel hacking

Your new Kernel needs to be somehow distinguishable from all of the other possible

kernels you can boot, and that identification comes from the first few lines of the top

level Makefile in the source tree. Open Makefile in vim, the EXTRAVERSION appears

blank, write -pu1 , save and exit.

$ vim Makefile

SPDX-License-Identifier: GPL-2.0

VERSION = 5

PATCHLEVEL = 3

SUBLEVEL = 7

EXTRAVERSION = -pu1

This is to have a unique kernel identifier for this kernel, I have written -pu1 over here.

Later if I will be building the same source with a bit of different functionality, I could write

something else there. With above data the uname –r command after the installation

will show us 5.3.7-pu1. However, even now, i.e. before build process you can check

the kernel release by giving the following command:

$ make kernelrelease

5.3.7-pu1

14 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

4.3 STEP-III: Compile/Build the Kernel

The compilation involves two things, first generate compress bootable kernel image and

second compile modules that are necessary for kernel working. You can do both the

steps separately

$ make –jn bzImage

$ make –jn modules

Or you can give a single command to build

$ time make –jn

The n after j tells how many cores the program is allowed to use. (I have used 4). As

mentioned above Machine 1 has 2 cores and machine 2 has 4 cores. So n can be

replaced by no. of cores you wish to give to the process. The time command tells the

time took by the program for completion.

If you have used option 1 (make oldconfig) to create the .config file, the build time

taken will be around 5 to 6 hours. I have used option 2 (make localmodconfig) to

create the .config file, the build time drastically reduced to just 28 minutes J.

 Afte the build process is complete, run the ls command in the linux-5.3.7 directory

and note the new files and directories created after the build process. I have highlighted

in red.

$ ls

arch certs crypto fs ipc kernel

MAINTAINERS samples sound usr COPYING Documentation

include lib Makefile net scripts virt README

security tool block CREDITS drivers init

LICENSES mm Kconfig Kbuild

modules.builtin modules.builtin.modinfo Module.symvers

modules.order System.map vmlinux.o vmlinux

15 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

4.4 STEP-IV: Install the Kernel

If you have been successful in building the kernel, now it is the time to install it. This is

the only step where you need root/sudoers privileges.

$ sudo make modules_install

It is always better to strip the modules before you install them. So following command is

better than above as it will reduce the size of the modules before installing them:

$ sudo make INSTALL_MOD_STRIP=1 modules_install

This step will take just a second and create a new directory /lib/modules/5.3.7-

pu1/ and copy all the .ko files (modules) over there. You can check the contents of that

directory

$ ls /lib/modules/5.3.7-pu1

Build kernel modules.alias.bin modules.builtin.modinfo

modules.devname modules.symbols modules.builtin

modules.dep modules.order modules.symbols.bin

modules.alias modules.builtin.bin modules.dep.bin

modules.softdep source

After you have installed the modules, now is the time to install the kernel, by giving the

following command:

$ sudo make install

The install section of Makefile will move the files to their destination locations mentioned

in the DIR variables (BIN_DIR, MAN_DIR, BIN_DIR_D, …). Instead of using mv or cp

command the install target of Makefile use linux install command that not only moves

files but also change permissions to those files. The install target of Makefile will mainly

perform following four steps:

• sudo cp ./arch/x86/boot/bzImage /boot/vmlinuz-5.3.7-pu1
• sudo cp ./.config /boot/ config-5.3.7-pu1
• sudo cp ./System.map /boot/System.map-5.3.7-pu1
• sudo mkinitramfs –o initrd.img-5.3.7-pu1

16 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

Note: Building in an alternate directory:

Until now, all of your configuration and compilation has been done in the same directory

as the kernel source itself, which is fine for most people but, in some cases, it’s more

convenient to preserve the kernel source untouched and have all the configuration

output and compilation results generated in a separate directory. To do this, from the

top of the kernel source tree, you can do something resembling to the following:

$ mkdir ../build_dir

$ cp /boot/config-5.7.0-43-generic ./.config

$ yes ‘’ | make O=../build_dir/ localmodconfig

$ make O=../build_dir/ -j4

$ make O=../build_dir/ modules_install

$ make O=../build_dir/ install

The advantages of above are manifolds. Firstly, this will leave the source unpolluted by

all of those output files, which makes it easier if you want to search the tree using

something like grep. Secondly, it allows you to work with a directory of kernel source for

which you have no write access. Finally, this feature lets you work with multiple

configurations and builds simultaneously, since you can simply switch from one output

directory to another on the fly, using the same kernel source directory as the basis for

all those builds. However, you must specify that output directory on every make

invocation. In short, this feture is meant to be used with a pristine kernel source tree.

17 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

4.5 STEP-V: Update Bootloader and Reboot

Now there are two kernels, i.e., vmlinuz-4.19.0 and vmlinuz5.3.7 in the /boot/

directory. See the contents of the file /boot/grub/grub.cfg and you can see new

entries in that file for the newly installed kernel. Now open the file

/etc/default/grub in vim and change the GRUB_TIMEOUT value from 5 to 30.

Moreover, let the GRUB_DEFAULT value to 0, which means by default boot from the first

entry of the kernel in the /boot/grub/grub.cfg file, which will be the newly installed

kernel. After making these changes you need to update the boot loader use the

following command:

$ sudo update-grub2

This will update GRUB with the new kernel. And if it is the latest kernel version then it

will become the default to be loaded when rebooting. Otherwise, we need to select the

kernel to run during the booting process explicitly. To open the boot loader, restart the

system, during system startup hold the shift key and you will see a screen with all

installed kernels.

$ sudo systemctl reboot

4.6 Verify your Installation

After your system is up and running again view following, to ensure that all the files after

installation of new kernel on your system are at right place and working correctly:

4.6.1 Check the currently running kernel version
$ uname -r

5.3.7-pu1

4.6.2 Check the new versions of following four files in the /boot directory.
$ ls /boot/

initrd.img-5.3.7-pu1

System.map-5.3.7-pu1

config-5.3.7-pu1

vmlinuz-5.3.7-pu1

18 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

4.6.3 Also see the modules directory. This is what it looks like on my system after the

installation:
$ ls /lib/modules

4.19.0-kali1-amd64 5.3.7-pu1

4.6.4 View the contents of /boot/grub/grub.cfg. Note the new kernel entry:
$ less /boot/grub/grub.cfg

 …

4.6.5 Last optional step is to clean your system. This is important if you want to play

again
$ make clean

Above target will remove most generated files, keeping config and enough build

support to build external modules
$make mrproper

The mrproper target will remove all generated files as well as the config file and

various backup files.
$make distclean

The distclean target will do mrproper + remove editor backup and patch files.

This takes you back to literally the pristine, distribution version of the kernel

source. This is a good option if you want to play again, on the same source tree.

If you think your installation is a success you can always remove the kernel

source folder provided if you have not build your kernel in the same
directory.
$ rm –rf linux-5.3.7

To repeat, you should delete all related files under the /boot/ directory and the

corresponding subdirectory in the /lib/modules/ directory. Then update the

grub and finally reboot.

19 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

Adding a System Call in Linux Kernel
Let us create a plus system call and add its code to the kernel. The major steps

involved are:

I. Write plus.c file in the kernel/ directory

II. Add ptototype of system call and and system call ID in appropriate files

III. Update the kernel/Makefile

IV. Configure, Compile, install the kernel

V. Test your system call using syscall()

VI. Write wrapper of your system call and again test it.

VII. Write man page

Step-1: Create source File

• For Linux Kernel 5.3.7

Create a new directory name Custom_Syscall
$ mkdir Custom_Syscall
$ vim Custom_Syscall/plus.c
#include <linux/kernel.h>
#include <linux/syscalls.h>
SYSCALL_DEFINE2(sys_plus, long, a, long, b)
{ return a + b; }
SYSCALL_DEFINE2 macro is used because this system call has 2 parameters.
sys_plus in the name of the system call. This system call will add the two
numbers and return it.

• For Linux Kernel 2.6, 3.10 and 4.2
$ vim kernel/plus.c
#include <linux/kernel.h>
#include <linux/syscalls.h>
asmlinkage long sys_plus(long a, long b)
{ return a + b; }
The asmlinkage is a macro that is used to override the default conventions on
parameter passing. It tells your compiler that the function expects all of its
arguments to be on the CPU stack instead of registers. All system calls are
marked with the asmlinkage tag.

20 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

Step-2: Add prototype and System Call ID in Syscall Table

• For Linux Kernel 5.3
Add prototype of system call in the end of following file:
$ vim + include/linux/syscalls.h
asmlinkage long sys_plus (long, long);

Now open the syscall_64.tbl and put syscall number, abi, name and

entry point at the last row of the file. Syscall number should be unique on the

kernel.

$ vim arch/x86/entry/syscalls/syscall_64.tbl

<number> <abi> <name> <entry point>
436 common plus __x64_sys_plus

Evey systemcall has a unique number. In order to call a syscall, we tell the

kernel to call the syscall by its number rather than by its name. The fourth

field (entry point) is the name of the function to call in order to handle the

syscall. The naming convention for this function is the name of the syscall

prefixed with __x64_sys_.

All system calls are identified by a unique number. In order to call a syscal,

we tell the krenel to call the syscall by its number rather than by its name. The

Application binary interface is normally i386 for 32 bit and 64 for 64 bit OS.

The third field is simply the name of the syscall. The fourth field (entry point)

is the name of the function to call in order to handle the syscall. The naming

convention for this function is the name of the syscall prefixed with sys_.

• For Linux Kernel 2.6

Add prototype of system call (plus.c) in include/linux/syscalls.h

asmlinkage long sys_plus(long,long);

Add following line in arch/x86/kernel/syscall_table_32.S
.long sys_plus

Add following line in arch/x86/include/asm/unistd_32.h

21 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

#define __NR_plus 338

#define __NR_syscalls 339

Add following line in arch/x86/include/asm/unistd_64.h

#define __NR_plus 300

#__SYSCALL(__NR_plus, sys_plus)

• For Linux Kernel 3.10
Add prototype of system call in arch/x86/include/asm/syscalls.h

asmlinkage long sys_plus(long,long);

Add following line in arch/x86/syscalls/syscall_32.tbl
<number> <abi> <name> <entry point> <compact entry pt>
358 i386 plus sys_plus
Add following line in arch/x86/syscalls/syscall_64.tbl
<number> <abi> <name> <entry point> <compact entry pt>
314 64. plus sys_plus

• For Linux Kernel 4.2
Add prototype of system call in arch/x86/include/asm/syscalls.h

asmlinkage long sys_plus(long,long);

Add following line in arch/x86/syscalls/syscall_32.tbl
<number> <abi> <name> <entry point> <compact entry pt>
358 i386 plus sys_plus

Add following line in arch/x86/entry/syscalls/syscall_64.tbl
<number> <abi> <name> <entry point> <compact entry pt>
314 64. plus sys_plus

22 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

Step-3: Update the Makefile

• For Linux Kernel 5.3.7
Create a new Makefile in Custom_Syscall/ directory and write a single line in it:

$ vim Custom_Syscall/Makefile

obj-y := plus.o

Open the linux-5.3.7/Makefile and search for core-y string:

$ vim linux-5.3.7/Makefile

core-y += kernel/ mm/ fs/ ipc/ security/ crypto/ block/

Replace above line with the following

core-y += kernel/ mm/ fs/ ipc/ security/ crypto/ block/ Custom_Syscall/

This tells kbuild that there is one object in directory Custom_Syscall named plus.o.
This plus.o will be build from plus.c

• For Linux Kernel 2.6, 3.10 and 4.2

There are over 1000 Makefiles in the kernel source folder, just open the

kernel/Makefile and add the following line in it.

$ vim kernel/Makefile
- - -
obj-y += plus.o

This tells kbuild that there is one object in that directory named plus.o. This plus.o

will be build from plus.c or plus.S. If plus.o shall be built as a module, the variable

obj-m is used. Therefore, the following pattern is often used:

Example: obj-$(CONFIG_FOO) += plus.o

$(CONFIG_FOO) evaluates to either y (for built-in) or m (for module). If CONFIG_FOO

is neither y nor m, then the file will not be compiled nor linked.

23 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

Step-4: Configure, Compile and Install

You may skip the configure step, if you have already done it in the previous tutorial, and

just need to compile giving the following command, which will now take about 10

minutes (Enjoy):

$ time make –j4

On success you can give the following command to install:

$ sudo make install

Step-5: Test Your System Call

Before executing this step, it is assumed that you have successfully installed the new

kernel and are running it. You have verified all the steps to confirm that the new kernel

is running correctly. Now to test the system call, you have added to your kernel, lets

write some test code, lets say we do this in driver.c.

$vim driver.c
#include <stdio.h>
#include <stdlib.h>
#include<sys/syscall.h>
#include <unistd.h>
long plus (int, int);
int main (int agrc, char* argv[]){
 int arg1=atoi(argv[1]);
 int arg2=atoi(argv[2]);
 long x= syscall(436, arg1, arg2);
 printf ("Sum: %ld\n", x);
 return x;
}
Compile the program and enjoy executing it. Finally, you did it. Congratulations

$ gcc driver.c
$./a.out 5 3
Sum: 8

24 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

• Step-6: Write Wrapper of System Call and Test

Normally, we donot call a system call using syscall() system call. Rather we

have a library wrapper function to almost all of the available system calls.

Wrapper function simplifies the system call interface and do necessary things like

invoke system call by its number, placing arguments in CPU registers, switch to

kernel mode, and set errno in case of failure. Otherwise these are the things that

are done by programmer himself. So it hides the complexity and provide simple

interface.

For our system call we write a simplest wrapper function, make its static library

and compile the test program with this library.

 $ vim pluswrapper.c
#include<unistd.h>

 #include<sys/syscall.h>
 #define PLUS 436

long plus(long a, long b)
 {
 return syscall(PLUS,a, b);
 }

Now make its static library by following commands

$ gcc -c pluswrapper.c

$ ar crs libarifplus.a pluswrapper.o

Rewrite the test program that is, test.c

$vim driver.c
#include <stdio.h>
#include<sys/syscall.h>
#include <unistd.h>
long plus (int, int);
int main (int agrc, char* argv[]){
` int arg1=atoi (argv[1]);

int arg2=atoi (argv[2]);
long x= plus(arg1, arg2);
printf (“Sum: %ld”, x);
return 0;

25 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

}

Now compile the driver.c file and link it with this static library by following
commands:

$ gcc –c driver.c –o driver.o
$ gcc driver.o –larifplus –L.

 Now run Add and pass 2 arguments through command line.

 $./a.out 3 5

Sum: 8

• Step-7: Write man page of System Call

Manual pages are the canonical type of documentation for UNIX systems. Manual

pages are reference documentation, intended to quickly answer questions like "what is

the purpose of this command" or "is there an option to enhance its functionality". It is to

give information about the basic functionality, description and knowledge about the

kernel commands and system calls. To see a man page use the following command.

All the man pages are stored in /usr/share/man/man{x}/ directory, where x is the

chapter number of what man page is about. The man pages are named as command-

name.{x}.gz where x is the chapter number to which the command belongs. There

are a total of eight chapters of man pages, which are as follows:

1. Executable/Shell commands

2. System calls (functions provided by the kernel)

3. Library functions (functions within program libraries)

4. Special files (usually devices, those found in /dev) and drivers

5. File formats and conventions

6. Games and screensavers

7. Miscellaneous

8. System administration commands (usually only for root)

26 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

Layout of Man page
All man pages follow a common layout that is optimized for presentation on a simple

ASCII text display, possibly without any form of highlighting or font control. Sections

present may include but are not limited to following:

NAME

SYNOPSIS

CONFIGURATION [Normally only in Section 4]

DESCRIPTION

OPTIONS [Normally only in Sections 1, 8]

EXIT STATUS [Normally only in Sections 1, 8]

RETURN VALUE [Normally only in Sections 2, 3]

ERRORS [Typically only in Sections 2, 3]

ENVIRONMENT

FILES

ATTRIBUTES [Normally only in Sections 2, 3]

VERSIONS [Normally only in Sections 2, 3]

CONFORMING TO

NOTES

BUGS

EXAMPLE

SEE ALSO

Note: For more details please refer to

 $ man man-pages or $ man man or $ man 7 man

Writing man page of plus system call

Writing manual pages is just like writing static html pages. In html we use <tag> to

modify the text here in man pages we use macros. In the same sense, always put the

macro in the start of the line e.g. to make text bold we use the macro .B and put it in the

start of the line, like

.B "text to be bold"

27 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT)

The draft man page of the plus system call which we added to kernel is shown below
$ vim plus.2

.\" This is the manual page for reverse system call .\"

.TH PLUS 2 “February,2015” “Linux Programmer's Manual”

.SH NAME
 plus \- adds two integers
.SH SYNOPSIS
.B #include<unistd.h>
.br
.sp
.BI "long plus(long " " integer1 ", "long " integer2);
.SH DESCRIPTION
This system call is written by Arif Butt to teach his students of
Advance Operating System at PUCIT. It adds two integers and it
returns the resultant integer.
.SH "RETURN VALUE"
return 0 on success or -1 on failure.
.SH "SEE ALSO"
.BR plus (1),
.BR plus (7)
.SH "MESSAGE"
Dear students of PUCIT, there is no short cut to hardwork. Happy
Learning with Arif Butt...

To install/add the man page we created, gzip it and copy it to chapter2 of man

pages as it is a man page for system call
$ gzip plus.2

$sudo cp plus.2.gz /usr/share/man/man2/

After copying the file to the man page location check man page.
$ man plus

