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Today's Agenda
Instructor:Arif Butt

● UNIX I/O Models
● Blocking I/O  model
● Non-Blocking I/O model
● Multiplexed I/O model
● Signal Driven I/O model
● Asynchronous I/O model
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UNIX  I/O Models
Instructor:Arif Butt

Before we proceed understanding each model, remember there
are normally, two distinct phases for an input operation:

● Waiting for data to be ready in the kernel buffer.
● Copying the data from  kernel buffer to process buffer.
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Blocking I/O Model
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Blocking I/O Model
Instructor:Arif Butt

● Most prevalent model for I/O is the Blocking I/O model. When an I/O
operation is initiated in this model, the calling process is blocked until the
I/O is completed

● The process/application making the system call is put into a waiting state by
the kernel. The application sleeps until the I/O operation is complete or has
generated an error at which point it is scheduled to run again

● The most common system calls having a default blocking behavior are
read(), write(), recv(), send(), recvfrom(),
sendto(), accept(), readv(), writev(), recvmsg(),
sendmsg(),

Pros:
● Easy to use and well understood
● Ubiquitous
● Beneficial if many fast I/O operations are to be made

Cons:
● Does not maximize I/O throughput
● Mostly causes all threads in a process to block
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Blocking I/O Model
Instructor:Arif Butt
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Example Code (Blocking IO)
Instructor:Arif Butt

﻿int main(){
   int fd1 = open("bigfile1",O_RDONLY);
   int fd2 = open("bigfile2",O_RDONLY);
   char buf[50];
  while(read(fd1,buf,50) != 0);
 
   printf("\nI have read Big File 1\n" );
   while(read(fd2,buf,50) != 0);

   printf("\nI have read Big File 2\nBye...\n" );
   return 0;
}

﻿To create a large size file of 1GiB, you can use following command:
$ dd if=/dev/urandom of=bigfile1 count=1048576 bs=1024
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Non-Blocking I/O Model
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Non Blocking I/O Model
Instructor:Arif Butt

● By making an I/O call non blocking, we are telling the kernel that
when the requested I/O operation cannot be completed w/o putting the
process to sleep. Do not put the process to sleep, but return an error
instead

● Polling:  Polling is an operation in which an application sits in a loop
on a non blocking descriptor to see if the operation can be performed

● We can make an I/O call non blocking, using fcntl() system call

Pros:
● Prevents a process from sleeping if the data is not available
● Parallel programming is possible
Cons:
● Difficult to code
● Polling wastes CPU cycles
● At times a partial read or write may be performed 
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Non Blocking I/O Model
Instructor:Arif Butt
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Example Code (Non-blocking IO)
Instructor:Arif Butt

﻿int main(){
char buf1[] ="\nPlease enter your name:\n";
write(1, buf1, sizeof buf1);
fcntl(0, F_SETFL, O_NONBLOCK);
char name[1024]; int n; int i=0;

   while (i++ < 3){
n = read(0, name, 1023);
if(n < 0)

perror("");
if(n > 0)

break;
sleep(5);

}
if (n > 0){

char buf2[] = "\nWelcome Mr. ";
write(1, buf2, sizeof buf2);
write(1, name, n);

}
return 0;

}
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Instructor:Arif Butt

Multiplexed I/O Model
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Multiplexed I/O Model
Instructor:Arif Butt

● With I/O Multiplexed model, a process can call select()  or
poll() and block on this system call, instead of blocking in the
actual I/O system call

● Comparing it with blocking I/O, there seems no advantage. It is
because over here as well the process is either blocked on
select() or on recvfrom() 

● However, the advantage of using select() is that a process can
wait for more then one  descriptor to be ready. So this model
allows a programmer to simultaneously monitor multiple file
descriptors to see if I/O is possible on any of them
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Multiplexed I/O Model
Instructor:Arif Butt
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Instructor:Arif Butt

Signal Driven I/O Model
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Signal Driven I/O Model
Instructor:Arif Butt

● In this model, the application program use signals, telling the
kernel to notify with the SIGIO<29>  signal when the
descriptor is ready

● The programmer need to enable the descriptor for signal driven
I/O and register the SIGIO signal handler using sigaction() 
system call. The return from this system call is immediate and
our process continues i.e it is not blocked

● When the datagram is ready to be read, the operating system
generates the SIGIO<29>  signal for our process. The process
can then read the datagram from the signal handler by calling
recvfrom()  and then notify the main loop that the data is
ready to be processed
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Signal Driven I/O Model
Instructor:Arif Butt
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Instructor:Arif Butt

Asynchronous I/O Model
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Asynchronous  I/O Model(...)
Instructor:Arif Butt

POSIX defines synchronous and asynchronous I/O as follows: 
● Synchronous I/O  operation causes the requesting process to be blocked

until the I/O operation completes. All previously discussed four models
are synchronous

● Asynchronous I/O  does not cause the requesting process to be blocked.
In general, these functions work by telling the kernel to start the operation
and to notify us when the entire operation (including the copy of data
from kernel to process buffer) is complete

Difference between Signal Driven and Asynchronous I/O model: 
➔ With signal driven I/O model, the kernel tells us when an I/O operation can

be initiated (i.e. when data is there in the kernel buffer)
➔ With asynchronous I/O model, the kernel tells us when an I/O operation is

complete (i.e. when data is there in the process buffer)
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Asynchronous  I/O Model
Instructor:Arif Butt
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Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s . . . .
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