
10/18/19 1Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Lecture # 2.6
UNIX IO Models

Course: Advanced Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

10/18/19 2Punjab University College Of Information And Technology(PUCIT)

Today's Agenda
Instructor:Arif Butt

● UNIX I/O Models
● Blocking I/O model
● Non-Blocking I/O model
● Multiplexed I/O model
● Signal Driven I/O model
● Asynchronous I/O model

10/18/19 3Punjab University College Of Information And Technology(PUCIT)

UNIX I/O Models
Instructor:Arif Butt

Before we proceed understanding each model, remember there
are normally, two distinct phases for an input operation:

● Waiting for data to be ready in the kernel buffer.
● Copying the data from kernel buffer to process buffer.

10/18/19 4Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Blocking I/O Model

10/18/19 5Punjab University College Of Information And Technology(PUCIT)

Blocking I/O Model
Instructor:Arif Butt

● Most prevalent model for I/O is the Blocking I/O model. When an I/O
operation is initiated in this model, the calling process is blocked until the
I/O is completed

● The process/application making the system call is put into a waiting state by
the kernel. The application sleeps until the I/O operation is complete or has
generated an error at which point it is scheduled to run again

● The most common system calls having a default blocking behavior are
read(), write(), recv(), send(), recvfrom(),
sendto(), accept(), readv(), writev(), recvmsg(),
sendmsg(),

Pros:
● Easy to use and well understood
● Ubiquitous
● Beneficial if many fast I/O operations are to be made

Cons:
● Does not maximize I/O throughput
● Mostly causes all threads in a process to block

10/18/19 6Punjab University College Of Information And Technology(PUCIT)

Blocking I/O Model
Instructor:Arif Butt

Application/Process Kernel

recvfrom() system call No datagram ready

Wait for
data to

 be available
in kernel buffer

Datagram ready

Copy datagram
Copy data

From
Kernel

buffer to
Process
bufferCopy complete

return OK
Process datagram

Process blocks and wait for
Data to be ready in kernel buffer
Data to be copied

10/18/19 7Punjab University College Of Information And Technology(PUCIT)

Example Code (Blocking IO)
Instructor:Arif Butt

﻿int main(){
 int fd1 = open("bigfile1",O_RDONLY);
 int fd2 = open("bigfile2",O_RDONLY);
 char buf[50];
 while(read(fd1,buf,50) != 0);

 printf("\nI have read Big File 1\n");
 while(read(fd2,buf,50) != 0);

 printf("\nI have read Big File 2\nBye...\n");
 return 0;
}

﻿To create a large size file of 1GiB, you can use following command:
$ dd if=/dev/urandom of=bigfile1 count=1048576 bs=1024

10/18/19 8Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Non-Blocking I/O Model

10/18/19 9Punjab University College Of Information And Technology(PUCIT)

Non Blocking I/O Model
Instructor:Arif Butt

● By making an I/O call non blocking, we are telling the kernel that
when the requested I/O operation cannot be completed w/o putting the
process to sleep. Do not put the process to sleep, but return an error
instead

● Polling: Polling is an operation in which an application sits in a loop
on a non blocking descriptor to see if the operation can be performed

● We can make an I/O call non blocking, using fcntl() system call

Pros:
● Prevents a process from sleeping if the data is not available
● Parallel programming is possible
Cons:
● Difficult to code
● Polling wastes CPU cycles
● At times a partial read or write may be performed

10/18/19 10Punjab University College Of Information And Technology(PUCIT)

Non Blocking I/O Model
Instructor:Arif Butt

recvfrom() system call No datagram ready Wait for
data to

 be ready
in the

kernel buffer

Copy data
From

Kernel
buffer to
Process
buffer

Copy complete
return OK

Process datagram

Application/Process Kernel

EWOULD BLOCK

recvfrom() system call No datagram ready
EWOULD BLOCK

.

.

.

.

.

.
recvfrom()

system call Datagram ready
Copy datagram

Process blocks while
data is copied from kernel
to application buffer

Process repeatedly
calls read waiting
for an OK

10/18/19 11Punjab University College Of Information And Technology(PUCIT)

Example Code (Non-blocking IO)
Instructor:Arif Butt

﻿int main(){
char buf1[] ="\nPlease enter your name:\n";
write(1, buf1, sizeof buf1);
fcntl(0, F_SETFL, O_NONBLOCK);
char name[1024]; int n; int i=0;

 while (i++ < 3){
n = read(0, name, 1023);
if(n < 0)

perror("");
if(n > 0)

break;
sleep(5);

}
if (n > 0){

char buf2[] = "\nWelcome Mr. ";
write(1, buf2, sizeof buf2);
write(1, name, n);

}
return 0;

}

10/18/19 12Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Multiplexed I/O Model

10/18/19 13Punjab University College Of Information And Technology(PUCIT)

Multiplexed I/O Model
Instructor:Arif Butt

● With I/O Multiplexed model, a process can call select() or
poll() and block on this system call, instead of blocking in the
actual I/O system call

● Comparing it with blocking I/O, there seems no advantage. It is
because over here as well the process is either blocked on
select() or on recvfrom()

● However, the advantage of using select() is that a process can
wait for more then one descriptor to be ready. So this model
allows a programmer to simultaneously monitor multiple file
descriptors to see if I/O is possible on any of them

10/18/19 14Punjab University College Of Information And Technology(PUCIT)

Multiplexed I/O Model
Instructor:Arif Butt

Application Kernel

No datagram ready
system call

select()

Datagram ready
Return readable

recvform() system call Copy datagram

Copy Complete
return OKProcess

datagram

Wait for
data to

 be ready
in kernel buffer

Copy data
From

Kernel
Buffer to
Process
buffer

Process blocks
in call to select,
waiting for
possibly many
descriptors to
become
readable

Process blocks
while data is
copied from
kernel to
application
buffer

10/18/19 15Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Signal Driven I/O Model

10/18/19 16Punjab University College Of Information And Technology(PUCIT)

Signal Driven I/O Model
Instructor:Arif Butt

● In this model, the application program use signals, telling the
kernel to notify with the SIGIO<29> signal when the
descriptor is ready

● The programmer need to enable the descriptor for signal driven
I/O and register the SIGIO signal handler using sigaction()
system call. The return from this system call is immediate and
our process continues i.e it is not blocked

● When the datagram is ready to be read, the operating system
generates the SIGIO<29> signal for our process. The process
can then read the datagram from the signal handler by calling
recvfrom() and then notify the main loop that the data is
ready to be processed

10/18/19 17Punjab University College Of Information And Technology(PUCIT)

Signal Driven I/O Model
Instructor:Arif Butt

Application Kernel

No datagram ready
sigaction system callEstablish

SIGIO
signal
handler

Datagram ready
Deliver SIGIO

recvform() system call Copy datagram

Copy complete
return OKProcess

datagram

Wait for
data to

 be ready
in kernel buffer

Copy data
from

Kernel buffer
 to

Process buffer

Process
continues
executing

Process blocks
while data is
copied from
kernel to
application
buffer

return

Signal handler

10/18/19 18Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Asynchronous I/O Model

10/18/19 19Punjab University College Of Information And Technology(PUCIT)

Asynchronous I/O Model(...)
Instructor:Arif Butt

POSIX defines synchronous and asynchronous I/O as follows:
● Synchronous I/O operation causes the requesting process to be blocked

until the I/O operation completes. All previously discussed four models
are synchronous

● Asynchronous I/O does not cause the requesting process to be blocked.
In general, these functions work by telling the kernel to start the operation
and to notify us when the entire operation (including the copy of data
from kernel to process buffer) is complete

Difference between Signal Driven and Asynchronous I/O model:
➔ With signal driven I/O model, the kernel tells us when an I/O operation can

be initiated (i.e. when data is there in the kernel buffer)
➔ With asynchronous I/O model, the kernel tells us when an I/O operation is

complete (i.e. when data is there in the process buffer)

10/18/19 20Punjab University College Of Information And Technology(PUCIT)

Asynchronous I/O Model
Instructor:Arif Butt

Application Kernel

aio_read()
system call

No datagram ready
return

Datagram ready

Copy datagram

Deliver signal

Specified in aio_read()
Signal handler
process datagram

Wait for data
to be ready
in kernel buffer

Copy data from
Kernel buffer to
process buffer

Process
Continuous
executing

Copy complete

10/18/19 21Punjab University College Of Information And Technology(PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

