
Table of Contents	 page

Abstract. . 2
Introduction. . 2
Basic systemd Concepts. . 3
Very Quick and Dirty Overview of Useful Commands. . . . 5
Basic Operations with systemd. . 5
Backward Compatible Support for init Scripts. 10
systemd Can Do More. . 11
Useful Tips and Tricks . . 12
Appendix A. . 14
Appendix B. . 15
Appendix C. . 15
Appendix D. . 15

systemd in
SUSE® Linux Enterprise 12
A kinder, gentler introduction from SUSE

White Paper
Server

2

Server White Paper
systemd in SUSE Linux Enterprise 12

Because of this, it has quite a learning curve, especially because it
introduces a number of new concepts and commands. However,
once you get over that initial hump, you will find systemd a pow-
erful and flexible tool.

According to the developers, systemd “provides aggressive paral-
lelization capabilities, uses socket and D-Bus activation1 for start-
ing services, offers on-demand starting of daemons, keeps track
of processes using Linux cgroups, supports snapshotting and
restoring of the system state, maintains mount and automount
points and implements an elaborate transactional dependency-
based service control logic.”2 It also promotes run-on sentences
and excessive fervor in its adherents.

This paper covers the basics of systemd with an emphasis on
providing correlations between how things were done with SysV
init and how they need to be done now with systemd.

Introduction
The move to systemd has been very controversial in the broader
Linux community. Critics have questioned why a replacement
for SysV init is needed in the first place, the design of systemd
and its implementation. While this paper won’t delve into all that
background, it will talk about a couple of points.

Why Replace SysV init?
The SysV init concept has been around for a long time. For the
most part, it works well. There are a number of areas where it
could be improved, however:

	 It’s slow.
	 It’s hard to parallelize.
	 The concept of runlevels is rather coarse.
	 Linux Standard Base (LSB) dependencies only do part of

what most system administrators need.
	 It lacks automatic restart of services (apart from what is in 	
/etc/inittab).

	 It lacks unified logging.
	 It lacks unified resource limit handling.

Abstract
Introduced with SUSE® Linux Enterprise 12, systemd
is the new system startup and service manager for
Linux, replacing the old System V init (SysV init).
Now you can forget everything you ever knew about
how Linux systems start up and manage services.
systemd is different, and you need to understand
how to work with it.

1	 If you don’t know what D-Bus is, don’t worry. It’s essentially an
abstraction layer for inter-process communications (IPC). You can
think of it as a more structured means to perform IPC without every
process wishing to use it having to figure it out for themselves.

2	 www.freedesktop.org/wiki/Software/systemd/

3www.suse.com

Many Independent Software Vendors (ISVs) don’t provide init
scripts for their products. While that behavior probably won’t
change for systemd, the hope is that writing systemd service
descriptions will be more straightforward and reliable than writ-
ing shell scripts.

SUSE understands the need for some level of backward compat-
ibility to help users and administrators alike adopt systemd more
easily. This paper highlights some of these enhancements as they .
are mentioned.

Basic systemd Concepts
Not only is systemd a replacement for the init process itself, but
also all the infrastructure that is built on top of it.

The Linux kernel by default starts one and only one “user space”
process: /sbin/init. (It’s a little more complex than that, but
for here it’s accurate enough.) This process is then responsible
for the bring-up of all services in the system, all connected ttys
on which to log in, which file systems need to be mounted, etc.
With SysV init, terminals (or “consoles”) are usually defined by
adding an entry to the /etc/inittab file. Most system services
are started by init using scripts that reside in /etc/init.d. These
init scripts are executed by a variety of helper scripts as the
system is brought up or change from one runlevel to another. In
addition to these services, there are boot scripts that reside in .
/etc/init.d/boot.d, which are executed only once during the
initial bring-up stages.

With systemd, /sbin/init is a symbolic link to systemd. As a
result, just as before, systemd is started as the first process and
runs with a process ID (PID) of 1. But unlike SysV init, systemd
strives to unify the way system resources are handled. To this end,
systemd introduces the concept of a unit file, capable of describ-
ing just about any sort of boot activity, system service or resource
that needs to be brought up and managed, and /etc/inittab
no longer even exists. (More on this later.)

Runlevels and Targets
As mentioned previously, SysV init uses the concept of runlevels.
These runlevels were used to define different system configura-
tions or system states. Typical Linux systems support runlevels
1, 3 and 5. Runlevel 1 (or S) describes the so-called single-user
configuration which can be used by the administrator to perform
intrusive management tasks; runlevel 3 is a multi-user configura-
tion with the network and all services active, but no graphical
console. Finally, runlevel 5 is typically used for a graphical work-
station type of configuration.

systemd supports a similar concept, called “targets.” In general,
targets are used as synchronization points in the boot process
and can be assigned almost arbitrary names. A good number of
pre-defined targets are included with the systemd package, so
take a look at those before deciding you need to create your own.

systemd does still support init scripts. Thus, if you have
written your own init scripts to bring up your own services,
there’s probably nothing or only very little you will have to do.
If you want, you can wait until later to convert them to sys-
temd service files. SUSE Linux Enterprise 12 itself is still using
scripts for a few services. To be clear, though, there are some
limitations and differences in how systemd handles them.

Refer to www.freedesktop.org/wiki/Software/systemd/
Incompatibilities/ for details.

Additionally, SUSE Linux Enterprise 12 still supports /etc/
sysconfig files to control the runtime behavior of services;
the majority of these variables haven’t changed from what
was supported in SUSE Linux Enterprise 11.

4

Server White Paper
systemd in SUSE Linux Enterprise 12

Dependencies and Parallelization
One the more important aspects of both init scripts and systemd
unit files is that they need to express dependencies between
services and boot activities. For instance, there’s not much use
in trying to mount a remote file system over NFS before the net-
work has been brought up. In fact, trying to do so will likely be a
painful experience. Both SysV init scripts and systemd unit files
allow you to create those dependencies, albeit in a different way.
However, in the systemd world, the dependency information is
much more pervasive and fine-grained, allowing systemd to be
much more aggressive in parallelizing system startup. Conversely,
systemd also allows the system administrator more control in
ensuring the order that services are started matches their intent.

Unit Files
As mentioned, the way to describe things to systemd is via unit
files. Unit files take a much more standardized approach to de-
scribing a service than the LSB header: while the latter was added
as a bit of an afterthought to make scripts more manageable, sys-
temd’s unit files are an integral part of the design. Unit files primar-
ily serve as a collection of meta information, with perhaps a few
lines of shell code that actually start, stop or restart the service.

For example, see Figure 1 for the systemd unit file for the cron
service, which can be found at /usr/lib/systemd/system/
cron.service.

Contrast that with the init script for cron, which has over 140 lines
of shell script and comments. As you can see, you can be quite
specific as to what other services you want to be started before
(or after) the service in this unit file. This is a big improvement
over the largely frustrating process of trying to do the same thing
with the LSB header in an init script.

Also, notice how the Service section specifies a restart option.
This is something that was tedious to do for SysV init scripts
and intrusive as well because it had to be done manually inside
each init script. This perhaps was the main reason why some
ISVs would have their services controlled through an entry in .
/etc/inittab: SysV init allows you to specify automatic restart
for entries in inittab.

systemd provides that facility “out of the box” for any kind of
service; you just have to enable it with a single statement in the
unit file. Of course, this is not the only useful facility built into
systemd. You can also specify a userid for a service to use when
it runs, restrict its security capabilities and even place limits on its
use of memory or the device files it can access, by using control
groups and name spaces. More on this later.

Although this paper only discusses the service and target types
of unit files in any detail, Figure 2 shows there is a rather wide
variety of unit file types.

.

There are man pages that go into great detail on each of these types
of unit files. You can access them by man systemd.<unittype>.
For example, man systemd.mount or man systemd.service.
The documentation for busname unit files is included in the man
page for systemd.service.

[Unit]
Description=Command Scheduler
After=ypbind.service nscd.service network.target
After=postfix.service sendmail.service exim.
service

[Service]
ExecStart=/usr/sbin/cron -n
Restart=on-abort

[Install]
WantedBy=multi-user.target

automount
busname
device
mount
path

scope
service
slice
snapshot
socket

swap
target
timer

Figure 1

Figure 2

5www.suse.com

There is a naming convention for just about all unit files. Some of
the conventions are more obvious than others, e.g., unit files for
services are named after the services themselves, such as sshd.
service or rpcbind.service.

Mount units must be named after the mount point directories
they control, e.g., var-tmp.mount for /var/tmp/ or var-spool.
mount for /var/spool/.

The systemd Journal
The systemd journal is a new logging scheme that provides
“structured, indexed and reliable logging on systemd systems.”3
In addition to recording the regular syslog messages generated
by a service, it also captures the standard output of daemons,
which previously went to the null device.

While it is possible to use the journal to completely replace the
classic syslog implementations, that has not been done in SUSE
Linux Enterprise 12. Instead, it uses the provided capabilities of
the journal to send the data to rsyslog.

One of the nice features of the journal is that systemctl status
will also show the last ten log messages of the daemon. If nothing
else, it avoids having to search for the file that contains the logs
for a daemon just to see those last lines. There are many other
features of the journal, which can be found in the man page for
the journalctl command.

Very Quick and Dirty Overview of Useful Commands
If you’re getting impatient by this point, you don’t have to read
all the way to the end before you can do something useful. If
you’re the type of person that likes to try something and see
how it works, check Appendix A. If you want more details, keep
reading here.

Basic Operations with systemd
Your main interface to systemd is the systemctl command.
You’ll likely find yourself typing that a lot so it might make sense
to create a shorter alias for it in your ~/.alias file.

Runlevels and Targets
As documented in /etc/inittab on systems using SysV init:

Runlevel 0 is System halt.
Runlevel 1 is Single user mode
Runlevel 2 is Local multiuser without remote network (e.g. NFS)
Runlevel 3 is Full multiuser with network
Runlevel 4 is Not used
Runlevel 5 is Full multiuser with network and xdm
Runlevel 6 is System reboot

The equivalent targets in systemd look like this:

To change to a new target (runlevel), you will use the systemctl
command. For example, to change to single-user mode:

systemctl isolate rescue.target

Similarly, to change to the non-graphical mode:

systemctl isolate multi-user.target

Note that “.target” must be specified on the command. If you
don’t, you’ll see this:

systemctl isolate rescue
Failed to start rescue.service: Operation refused,
unit may not be isolated.

There are some apparent exceptions to this, which really aren’t.
For example, you can issue commands such as this:

systemctl default__________

3	 http://0pointer.de/blog/projects/systemctl-journal.html

  Runlevel   Equivalent systemd target

  0   poweroff.target

  1   rescue.target

  2, 3, 4   multi-user.target

  5   graphical.target

  6   reboot.target

6

Server White Paper
systemd in SUSE Linux Enterprise 12

which will put the system in the default target configuration, or

systemctl reboot

which will reboot the system. These are in fact systemd “system
commands” and are documented in the systemctl man page
under “System Commands.” There are about a dozen of them
listed there. For things like default, halt, reboot and some
others, the result is the same as issuing systemctl isolate
default.target, systemctl isolate halt.target, etc. The
difference is that the system command forms will also send a
wall message to all users whereas the isolate form will not.

SETTING AND QUERYING THE DEFAULT TARGET (RUNLEVEL)

You can determine the default target with systemctl get-default
systemctl get-default
graphical.target

You can set the default target with systemctl set-default
systemctl set-default graphical.target
systemctl set-default multi-user.target

Just as with SysV init, you must not set the default target to
poweroff.target or reboot.target. If you do, you’ll get the same
result with systemd: a system that either immediately shuts itself
down or reboots endlessly.

Enabling and Disabling Services
Over the years, multiple ways have been created to enable or
disable system services. The two most used on SUSE Llinux
Enterprise are chkconfig and insserv. With the introduction of
systemd, the functionality of those two tools is rather limited.

For example, chkconfig can really only be used to manage ser-
vices that have an init script in /etc/init.d/. For packages that
have a systemd service unit file, chkconfig on and chkconfig off
can be used to enable or disable the service and not much else.
The insserv command will only work with init scripts in /etc/
init.d/. Any attempt to use insserv with a systemd unit file will
result in messages such as this:

insserv -r nscd
Warning: /etc/init.d/nscd is masked by
/usr/lib/systemd/system/nscd.service.
Try ‘chkconfig nscd off’ instead

The more realistic recommendation would be to use systemctl
disable nscd instead.

Enabling or disabling services should not be confused with start-
ing (activating) or stopping (deactivating) services, as done by
the start and stop commands. Enabling/disabling and starting/
stopping services are completely separate actions. Start/stop
only affects the currently running system and is not persistent.
Enabling/disabling affects the system at the next runlevel (tar-
get) change and is persistent.

The systemd equivalent to chkconfig and insserv is, you guessed
it, systemctl.

systemctl enable xinetd.service
systemctl disable xinetd.service

Also note that we’re not specifying which targets we want xinetd
to run in. The reason is the unit file itself tells systemd when it
should be running or not.

For compatibility purposes, aliases to various targets have
been provided in systemd:
runlevel0.target -> poweroff.target
runlevel1.target -> rescue.target
runlevel2.target -> multi-user.target
runlevel3.target -> multi-user.target
runlevel4.target -> multi-user.target
runlevel5.target -> graphical.target
runlevel6.target -> reboot.target

This will allow you to do things like

systemctl isolate runlevel5.target

where with SysV init you would execute
telinit 5

(Actually, if you have the systemd-sysvinit RPM installed,
you can still use the telinit command to do this.)

7www.suse.com

To determine if a service is enabled or not

systemctl is-enabled xinetd.service

will print one of a number of possible values:

In the three “-runtime” status entries, -”runtime” indicates that a
status is only temporary and will be lost at the next reboot.

Also note the masked status. This is the result of using systemctl
mask for a unit file. As noted, this will prevent the unit from ever
being started, even by a systemctl start command. You prob-
ably won’t use this very often, but it can be helpful in situations
where you absolutely want to be sure a service won’t be started
automatically or by accident. The converse of the command is
systemctl unmask.

Starting, Stopping and Checking Service Status
The way you would start and stop the cron service shown above
is thus:

systemctl start cron.service
systemctl stop cron.service
systemctl restart cron.service

Normally, these commands do not display much in terms of
feedback. To be sure, follow the start command with systemctl
status to view the actual status of the service.

If there is a problem, there are a variety of messages you might
get:

Job for cron.service failed. See ‘systemctl status
cron.service’ and ‘journalctl -xn’ for details.

Failed to reload cron.service: Job type reload is
not applicable for unit cron.service.

The systemctl status command will provide the current status
of the service as well as some entries from the system log for it:

systemctl status cron.service
cron.service - Command Scheduler
 Loaded: loaded (/usr/lib/systemd/system/cron.
service; enabled)
 Active: active (running) since Thu 2014-06-26
19:35:09 EDT; 50s ago
 Main PID: 30596 (cron)
 CGroup: /system.slice/cron.service
 |——30596 /usr/sbin/cron -n

Jun 26 19:35:09 s390vsl210 systemd[1]: Starting
Command Scheduler...
Jun 26 19:35:09 s390vsl210 systemd[1]: Started
Command Scheduler.
Jun 26 19:35:09 s390vsl210 cron[30596]: (CRON) INFO
(RANDOM_DELAY will be scaled with ...d.)
Jun 26 19:35:09 s390vsl210 cron[30596]: (CRON) INFO
(running with inotify support)
Jun 26 19:35:09 s390vsl210 cron[30596]: (CRON) INFO
(@reboot jobs will be run at compu...p.)
Hint: Some lines were ellipsized, use -l to show in
full.

systemctl -l status cron.service
cron.service - Command Scheduler
 Loaded: loaded (/usr/lib/systemd/system/cron.
service; enabled)
 Active: active (running) since Thu 2014-06-26

  Printed string   Meaning   Return value

 � enabled
enabled-runtime

  �The service is enabled and will be started
at the next runlevel (target) change.

  0  .

  disabled  � The service is not enabled, but can be
started and stopped manually.

  1  .

 � masked
masked-runtime

  �The service is disabled and cannot be
started, even manually.

  1  .

 � linked
linked-runtime

  �The service is enabled and will be started
at the next runlevel (target) change.

  1  .

  static4

  �The service is not enabled and has no
provisions in the [Install] section for
being enabled. It can be started manu-
ally and will be started automatically if
another unit file that is started needs it.

  0 

4	 Units that are shown as “static” can neither be enabled nor
disabled. These are units that will be activated if another service
needs them to run. Instead of systemctl enable or systemctl
disable, use systemctl unmask or systemctl mask respectively.

8

Server White Paper
systemd in SUSE Linux Enterprise 12

19:35:09 EDT; 1s ago
 Main PID: 30596 (cron)
 CGroup: /system.slice/cron.service
 |——30596 /usr/sbin/cron -n

Jun 26 19:35:09 s390vsl210 systemd[1]: Starting
Command Scheduler...
Jun 26 19:35:09 s390vsl210 systemd[1]: Started
Command Scheduler.
Jun 26 19:35:09 s390vsl210 cron[30596]: (CRON) INFO
(RANDOM_DELAY will be scaled with factor 66% if
used.)
Jun 26 19:35:09 s390vsl210 cron[30596]: (CRON) INFO
(running with inotify support)
Jun 26 19:35:09 s390vsl210 cron[30596]: (CRON) INFO
(@reboot jobs will be run at computer’s startup.)

Some services, such as cron, still provide an init script, along with
a systemd unit file. These init scripts should be sourcing the /
etc/rc.status script very early on. The /etc/rc.status script
will determine if systemd is running and redirect the command
to it. If you really want the init script to be executed, simply set
the SYSTEMD_NO_WRAP environment variable to any non-null value
when invoking it. Be aware, though, that using this environment
variable means systemd will not be monitoring the service started
by the init script. Therefore, this should only be used for debug-
ging purposes and not in production. A good way to debug an
init script startup/shutdown sequence would be to change its
“shebang” to #!/bin/sh -x or #!/bin/bash -x and check
journalctl output.

rccron stop
redirecting to systemctl stop cron.service

SYSTEMD_NO_WRAP=x rccron stop
Shutting down CRON daemon done

SYSTEMD_NO_WRAP= rccron stop
redirecting to systemctl stop cron.service

SYSTEMD_NO_WRAP= /etc/init.d/cron stop
redirecting to systemctl stop cron.service

SYSTEMD_NO_WRAP=z /etc/init.d/cron stop
Shutting down CRON daemon

Managing the systemd Daemon
With SysV init, when the system administrator would need to
modify /etc/inittab, they had to always remember to tell init
to re-examine the contents of the file. With systemd that is fre-
quently done implicitly as the result of other commands being
issued. However, when it does need to be done manually, that
can be accomplished as follows:

For those cases where the daemon needs to be restarted, e.g.,
when the binary has been replaced by maintenance, then:

Socket Activation for Services
systemd provides for activating services when a socket connec-
tion is made to a listening port, much like inetd and xinetd do .
for network services. systemd takes the concept further, extend-
ing it to include local “bus-based” services such as D-bus as well
as others such as multipathd, dm-event, syslog, etc. Looking in .
/usr/lib/systemd/system/ you’ll see a number of socket unit
files. In most cases, but not all, you’ll notice that there is a cor-
responding service unit file:

- dm-event.service and dm-event.socket
- iscsid.service and iscsid.socket
- rpcbind.service and rpcbind.socket

The reasoning behind this separation of the socket and the pro-
gram that “services” the socket is somewhat sophisticated5. It
reduces the time it takes a system to boot by starting fewer
services, but more of them in parallel:

  SysV init command   systemd command

 � telinit q
telinit Q

  systemctl daemon-reload

  SysV init command   systemd command

 � telinit u
telinit U

  systemctl daemon-rexec

5	 See http://0pointer.de/blog/projects/systemd.html and
http://0pointer.de/blog/projects/socket-activation.html

9www.suse.com

	 systemd can create all the sockets ahead of time without
having to wait for each daemon to initialize.

	 Services that wait until a socket from another daemon,
say syslog, is available can start sooner and have activity
over the socket buffered until the syslog daemon is fully
initialized.

	 By not starting a service—for example, sshd—until a
connection is made, infrequently used daemons won’t 	
be consuming system resources during boot or normal
system activity.

Having this logical separation can lead to some confusion, how-
ever. In many cases the socket unit files can be enabled, disabled,
started and queried independent of the service unit. Enabling,
disabling and starting the service should result in the same ac-
tion being taken for the socket, since the service depends on the
socket. Because of that dependency, stopping a socket should
result in the service being stopped. Stopping the service, though,
does not mean the socket will be stopped. The rpcbind service
is a good example of this:

systemctl stop rpcbind.service
Warning: Stopping rpcbind.service, but it can still
be activated by:
 rpcbind.socket

What that message means is that systemd will remain listen-
ing for connections on the rpcbind socket. If a connections is
received, systemd will start the rpcbind daemon to handle it..
To truly stop rpcbind from running, you must stop the rpcbind.
socket unit. In many cases, it may be easiest to try and remember
to “Start the service” and “Stop the socket.”

Local File System Handling
If you’re used to adding file systems via the YaST® tool or manu-
ally editing /etc/fstab, then you don’t need to do anything
differently with systemd. YaST will still update /etc/fstab with
the information necessary to mount the file system. Using YaST
is the preferred method for adding/changing file system mounts.
The systemd developers recommend using fstab entries wher-
ever possible. However, if you need more control over what file
systems get mounted and when, or need a feature that isn’t sup-
ported in fstab, then you can create a systemd mount unit file.

For example, assume you’ve added a new disk to a system, parti-
tioned it and created an ext3 file system. The new disk is named /dev/
sdb, and you want to mount the first partition on /sysdtest. The
unit file to have it mounted at boot time would be /etc/systemd/
system/sysdtest.mount and it might look like Figure 3.

Understand that simply creating the unit file will not cause the
file system to be automatically mounted at the next boot. You
must also enable the mount:

systemctl enable sysdtest.mount

This will cause systemd to create a symbolic link to the unit file in
the /etc/systemd/system/local-fs.target.wants directory.

Once the unit has been enabled, the actual mount will be per-
formed the next time the system reaches the local-fs.target dur-
ing the boot process. If you want it to happen immediately, then

systemctl start sysdtest.mount

will accomplish that.

Conversely,

systemctl stop sysdtest.mount

[Unit]
Description=systemd testing directory
Before=local-fs.target
skip mounting if the directory does not exist
or is a symlink
ConditionPathIsDirectory=/sysdtest
ConditionPathIsSymbolicLink=!/sysdtest

[Mount]
What=/dev/sdb1
Where=/sysdtest
Type=ext3

[Install]
WantedBy = local-fs.target

Figure 3

10

Server White Paper
systemd in SUSE Linux Enterprise 12

will cause the file system to be unmounted immediately, and

systemctl disable sysdtest.mount

will cause the symbolic link to be deleted and the file system will
not be mounted again automatically.

See man systemd.mount for the other entries that are specific
to mount unit files.

Remote File System Handling
Working with remote file systems, such as over NFS, is similar to
working with local file systems. Of course there are differences
due to the need for a working network connection, etc. The pre-
ferred method here also is to continue to use YaST and entries
such as the following will be added to /etc/fstab:

remote.host.name:/nfs/export	/sysdtest	 nfs	
defaults		 0 0

The normal system startup will ensure that the network and the
necessary RPC-related daemons are started before the mount
is attempted.

Again, if you believe you need to create a mount unit file, it might
look like Figure 4.

Note the addition of the After= value for the nfs service. If you’re
writing your own unit files, you are reponsible for knowing what
has to be started before or after your unit and describing those
dependencies in the unit file.

Backward Compatible Support for init Scripts
To ease the transition to systemd, SUSE is providing backward
compatible support for init scripts in a number of ways. For ex-
ample, in the SysV init environment, init scripts can have a special
header that provides some meta information on the service: a
short name, the preferred runlevels to be run in, which other ser-
vices need to be started before this one in order for it to work,
etc. This header is called the “LSB header,” named after the “Linux
Standard Base” working group that defined it6. (See Appendix
D for an example from SUSE Linux Enterprise 11.) SUSE will con-
tinue to support these headers in systemd, including the use of
the special “LSB targets” or dependencies such as $network,
$remote_fs, $portmap, etc.

Furthermore, many services in SUSE Linux Enterprise have had
symbolic links in /sbin or /usr/sbin pointing to the actual init
script in /etc/init.d, for example, rccron, rcpostfix, rcsshd.
Those symbolic links still exist (even if the package no longer
contains an init script), but may point either to an init script in .
/etc/init.d, or to /usr/sbin/service. If the symbolic link
points to /usr/sbin/service, it will determine if the command .
should be redirected to systemctl or not and proceed accordingly.

A significant caveat applies to the use of the “rcfoo” names to
start services, however. When a service is invoked by its rc* sym-
bolic link, no attempt is made to ensure that any prerequisite ser-
vices are started first, just as happens with SUSE Linux Enterprise
11. So, for example, if you enter rcnfs start and rpcbind is not
running, the command will fail. In contrast, when using system-
ctl start nfs.service, systemd will start any prerequisite
services first.

Finally, use of chkconfig, insserv and the service command will
still be provided. Be aware that their functionality has changed
somewhat and, in most cases, will be calling on systemd to per-
form the actual work requested.

[Unit]
Description=systemd testing directory
Before=remote-fs.target
After=nfs.service
skip mounting if the directory does not exist
or is a symlink
ConditionPathIsDirectory=/sysdtest
ConditionPathIsSymbolicLink=!/sysdtest

[Mount]
What=remote.host.name:/nfs/export
Where=/sysdtest
Type=nfs

[Install]
WantedBy = remote-fs.target

6	 www.linuxfoundation.org/collaborate/workgroups/lsb

Figure 4

11www.suse.com

systemd Can Do More

Control Groups, and How systemd Uses Them
systemd puts each service and each session into a separate con-
trol group (cgroup). These control groups are a kernel feature and
can be used in a variety of useful ways. Perhaps most importantly,
control groups provide a means of tracking which processes be-
long to a given service. If you’ve ever had to deal with the unclean
shutdown of, say, an application server, and had to hunt down
all its helper processes and agents and kill them manually, you
will probably appreciate the systemd-cgls command and its
companion, the systemctl kill command.

Sessions also get assigned an audit ID matching their cgroup ID.
You can restrict these cgroups in all the ways the kernel supports:
I/O bandwidth, memory or CPU consumption, etc.

Very much like the pstree command, systemd-cgls provides
an ASCII tree representation of all the control groups on the
system. See Figure 5.

In this example, you can see the control group associated with
the postfix service, and all processes that were started as part
of this service. That’s much more useful than pstree, isn’t it? But
there’s more. Assume your service got stuck in some weird error
state, and you’re no longer able to shut it down cleanly. Rather
than killing off processes manually by referring to their PID (and
keeping your fingers crossed that you’re not mistyping anything),
you can use a command like this:

systemctl kill postfix.service

This will kill all processes in the control group associated with this
service. Done! And if you did mistype the service name, you’re

not going to kill some other innocent process. Instead systemd
will tell you:

Failed to kill unit typo.service: Unit typo.service
is not loaded.

Of course, there’s more to control groups than this. The kernel
supports a number of so-called cgroup controllers that can limit
the resource usage of any given control group. This gives you the
ability to restrict the amount of CPU and memory used by a ser-
vice or its amount of I/O bandwidth. All of these can be set using
simple statements in a unit file. Of course, you can also set ulimits
as you used to (and you can also do that in unit files). But one of
the big benefits of control groups over ulimits is that ulimits apply
to single processes only. Control groups allow you to enforce a
limit on the aggregate usage of all processes in a control group,
no matter how many helper processes the service may spawn.

See the files under /usr/src/linux/Documentation/croups/
in the kernel-source RPM for more details.

You can also tune some cgroup properties for specific services
by using the following options in the [Service] section.

For example, to manage CPU usage in a cgroup:

CpuShares=1500

Or to manage I/O bandwidth:

BlockIOWeight=(optional path) 500

BlockIORead(Write)Bandwidth=/var/log 5M

Or memory (RAM) consumption:

MemoryLimit=1G

See man 5 systemd.resource-control for a full list.

Security Features
systemd has a number of features that you can easily exploit to
control resources consumption for performance reasons and to
better assure security. Except as noted, you can find more infor-
mation on these features in systemd.exec(5).

Figure 5

systemd-cgls /sys/fs/cgroup/systemd/system.
slice/postfix.service
/sys/fs/cgroup/systemd/system.slice/postfix.
service:
|——2619 /usr/lib/postfix/master -w
|——2621 pickup -l -t fifo -u
|——2622 qmgr -l -t fifo -u

12

Server White Paper
systemd in SUSE Linux Enterprise 12

RESTRICT SERVICES AND SESSIONS USING NAMESPACES

Linux kernel namespaces are the technology underlying Linux
containers. In the case of systemd, the network namespace fea-
ture is used to limit/isolate network access for a service.

	 PrivateNetwork=yes

This will set up a new network namespace for the executed pro-
cesses and configures only the loopback network device lo inside
it. No other network devices will be available to the executed
process.

BLACKLIST DIRECTORIES SO THAT THEY CANNOT BE ACCESSED

You can prevent a service from any access to particular directo-
ries, or restrict it to read-only access.

InaccessibleDirectories=/home
ReadOnlyDirectories=/var

REQUIRE A PRIVATE DIRECTORY FOR A SERVICE’S

TEMPORARY FILES

If you don’t want a service’s temporary files accessed by other
processes, you can force that service to use a separate, private
directory for /tmp and /var/tmp without having to modify the
service itself.

	 PrivateTmp=yes

WHITELIST ACCESS TO DEVICES IN /dev

By default, processes are allowed to “see” all devices under /dev.
As always, normal UNIX/Linux permissions control what can be
done with those devices. For more control, you can limit what
devices are seen by coding which device nodes you want them
to access and what type of permissions they have for them. See
systemd.resource-control(5).

	 DeviceAllow=/dev/null rw

SPECIFY THE USER AND GROUP TO BE USED BY A SERVICE

If you need a service to run as a specific user or group, you can
easily force that in the unit file.

	 User=
	 Group=

START THE SERVICE IN A CHROOTED ENVIRONMENT

	 RootDirectory=

Note that If this is used, systemd will not automagically ensure that
the process and all its auxiliary files are available in the chroot()
jail. That is still the job of a human to set up ahead of time.

ASSIGN OR PROHIBIT LINUX KERNEL CAPABILITIES (CAP_FOOBAR)

There are a lot of kernel capabilities that can be exploited by a
process. See capabilities(7) for the full list. Many of these ca-
pabilities require the process that invokes them to be privileged,
but not all. You can grant access to those capabilities, or remove
access as needed by your local requirements.

	 CapabilitiesBoundingSet=CAP_CHOWN CAP_KILL
	� CapabilitiesBoundingSet=~CAP_PTRACE (all but this

one)

SET ULIMIT VALUES

As mentioned previously, specifying ulimits in a unit file has the
advantage of limiting the aggregate resource usage of all pro-
cesses in a control group. All of the same limits that are normally
available can be specified.

	 LimitNPROC=1
	 LimitFSIZE=0

Useful Tips and Tricks

Does booting with “init=/bin/bash” still work?
Yes, it does. How you enter that is a little different, due to grub2
being the bootloader for SUSE Linux Enterprise Server 12.

	 Use the up/down arrows on the keyboard to select the
kernel/initrd combination you want to use to boot.

	 Press the “e” key on the keyboard.
	 Use the up/down arrow keys to find the line that begins 	

with “linux /boot/vmlinux...”
	 Use either the left/right arrow keys or the “end” key to get

to the end of that line.
	 Add init=/bin/bash and press the F10 key, or Control-x 	

to initiate the boot.

13www.suse.com

How can I boot into runlevel 1 for system repair?
This is similar to the technique described for adding “init=/
bin/bash” to the kernel command line. Simply add systemd.
unit=rescue.target or just 1 to it.

How can I debug startup problems?
Again, similar to the technique described for adding “init=/bin/
bash” to the kernel command line, there are keywords you can
add instead:

	 systemd.log_level=debug will cause additional logging to
be written to the system journal (log). Use the journalctl
-ab command to examine the output.

	 debug (The systemd developers decided to interpret this
keyword as belonging to systemd in addition to the kernel.)

	 If the problem doesn’t seem to be with systemd but dracut,
you can use the rd.debug parameter to get more information
written to the system journal.

For more information, you can refer to the web page at: http://
freedesktop.org/wiki/Software/systemd/Debugging/

How do I override or supplement systemd defaults?
First, understand that you should never modify a file in /usr/
lib/systemd/system/. Any changes you make there will be lost
when systemd maintenance is installed. To avoid that, systemd
has implemented a way of “stacking” and merging configuration
information. This means that changes you make are safe from
being overwritten and are easily identifiable.

By design, any files in /etc/systemd/system/ take precedence
over those in /usr/lib/systemd/system/. Therefore, you can
create a copy in /etc/systemd/system/ and modify it there.
Understand that the original file in /usr/lib/systemd/system/
will be completely ignored thereafter, so be careful of the modi-
fications you make.

Perhaps the easiest (and safer) way is to use one or more “drop-
in” files. Using the cron service as an example:

	 Create the /etc/systemd/system/cron.service.d/
directory with mkdir

	 Create files in that directory, such as /etc/systemd/system/
cron.service.d/mychanges.conf containing only those
parameters you want to add or override:

	 [Service]
	 CPUShares=1500
	 BlockIOWeight=500
	 MemoryLimit=1G

	 In this scenario, the service file in /usr/lib/systemd/
system/ will still be read and used, and the parameters you
specified will be merged with and/or override what is there.

In both cases, after the changes have been made, run systemctl
daemon-reload to have them used by systemd.

How do I find out what other units are needed for a
particular unit?
Using the wickedd.service as an example:

systemctl show -p “Wants” wickedd.service
Wants=wickedd-nanny.service wickedd-auto4.service
wickedd-dhcp4.service wickedd-dhcp6.service system.
slice

If you leave off the -p “Wants” parameter, systemd will display
all the properties it knows about a unit, which is quite a list (over
120 lines of output). Looking through that output should give
you a good idea what other properties you might be interested
in displaying.

How do I tell what changes from the systemd defaults
have been made?
To check all changes applied (in /etc/systemd/system) on a
system, you can use the systemd-delta command, which will
output a diff of those changes.

14

Server White Paper
systemd in SUSE Linux Enterprise 12

Appendix A

Very Quick and Dirty Overview of Useful Commands

STARTING AND STOPPING A SERVICE

Previously, if you wanted to start or stop a service manually,
you would call its init script using the corresponding verb as the
parameter. For your convenience, init scripts shipped by SUSE
are usually accessible via an “rcserviceName” command that .
you could use as shorthand instead of the longer /etc/init.d/
serviceName path name.

Things aren’t much different with systemd. To begin, where we
supported a shorthand command rcfoobar, we still do so today.
The difference is that it is now mapped to a call to systemctl,
which is one of the two or three really central systemd utilities you
will come across as an administrator.

Its use is pretty straightforward:

	 # systemctl start sshd.service
	 # systemctl stop sshd.service
	 # systemctl status sshd.service

These are really the three most important commands you’ll have
to remember. Note that while you should include the .service
suffix, it’s not 100 percent required. If you don’t use the suffix,
systemd will check to see if a service file exists and use it.

If you try systemctl status, you will notice that it is verbose
in its output. Where a classic LSB script would only print a fairly
terse message that would tell you whether the service is running
or not, systemctl tries to give you all relevant information at a
glance. However, once you’ve become used to it, you may miss
it dearly when you need to go back to a SysV init based system.

Want to see more? How about this:

Enabling and Disabling a Service
	 # systemctl enable sshd.service
	 # systemctl disable sshd.service

This is how you enable a service so that it gets activated auto-
matically on the next reboot or runlevel change. Disabling does
just the reverse, as you’ve surely figured out.

Rebooting or Shutting Down the System
To reboot the system:

	 # systemctl reboot

To shut down the system:

	 # systemctl halt
	 # systemctl poweroff

Changing Runlevels
To get to runlevel 1 or S:

	 # systemctl rescue

To get to the default runlevel:

	 # systemctl default

Looking at System Logs with journalctl
Looking at the output from various services is quite easy with
journalctl.

	 # journalctl -u sshd

Compare the output of that command with this:

	 # journalctl -x -u sshd

With the second, you’ll notice a lot of additional output. This
extra output is to augment log lines with explanatory text from
the message catalog.

Instead of tail -f /var/log/something you can run

	 # journalctl -f

15www.suse.com

Like to see what’s in the kernel ring buffer with dmesg?

	 # journalctl -k

will do that. Even better than the dmesg command, you can do
this:

	 # journalctl -k -f

and see new messages as they’re added to the buffer.

Appendix B

Terminology
	 Unit file—Encodes information about things such as a

service, socket, device, mount, automount, target, snapshot,
etc.

	 Target—A unit configuration file whose name ends in
“.target” encodes information about a target unit of
systemd, which is used for grouping units and as well-known
synchronization points during startup.

	 Slice—A concept for hierarchically managing resources of a
group of processes.

	 Seat—The set of hardware available at one work place
(graphics card, keyboard, mouse, usb devices).

	 – This doesn’t seem to be relevant to System z

	 Session—A session is created once a user is logged on,

using a specific seat:

	 – Only one session can be active per seat.
	 – The default seat (for Linux consoles) is seat0.

	 Hardware is assigned to seats.

	 – This replaces ConsoleKit

Appendix C

Websites and Other Documentation for Reference
The man pages that are packaged with systemd are pretty ver-
bose, which can be both good and bad. As most man pages do,
they tend to assume some background you may nor may not
possess. The following links can help fill in that background:

www.suse.com/documentation/sles-12/book_sle_admin/
data/cha_systemd.html

www.suse.com/documentation/sles-12/pdfdoc/book_sle_
admin/book_sle_admin.pdf

www.freedesktop.org/wiki/Software/systemd/ .
Scroll down a bit to get to some of the more interesting stuff.

http://freedesktop.org/wiki/Software/systemd/Debugging/

www.linux.com/learn/tutorials/788613-understanding-and-
using-systemd

http://0pointer.de/blog/projects/systemd.html

http://0pointer.de/blog/projects/systemd-update.html

http://0pointer.de/blog/projects/systemd-update-2.html

http://0pointer.de/blog/projects/systemd-update-3.html

http://en.wikipedia.org/wiki/Systemd

http://0pointer.de/blog/projects/why.html

Appendix D

Sample LSB header for cron init script
BEGIN INIT INFO
Provides: cron
Required-Start: $remote_fs $syslog $time
Should-Start: $network smtp
Required-Stop: $remote_fs $syslog
Should-Stop: $network smtp
Default-Start: 2 3 5
Default-Stop: 0 1 6
Short-Description: Cron job service
Description: Cron job service
END INIT INFO

www.suse.com

Contact your local SUSE Solutions Provider,
or call SUSE at:

1 800 796 3700 U.S./Canada
1 801 861 4500 Worldwide

SUSE
Maxfeldstrasse 5
90409 Nuremberg
Germany

262-002515-001 | 01/15 | © 2015 SUSE LLC. All rights reserved. SUSE, the SUSE logo and YaST are registered trademarks of SUSE LLC in the

United States and other countries. All third-party trademarks are the property of their respective owners.

