Instructor:Arif Butt

Lecture # 4.5
Linux Process Scheduler
O@1)/CFS

Course: Advanced Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src

Lecture Slides available at: http: //arifbutt.me

Punjab University College Of Information Technology (PUCIT) 1



ETE Instructor:Arif Butt
.iAgenda

e Overview of CPU Scheduling
e UNIX SVR3 CPU Scheduler
e Linux O(1) CPU Scheduler
e Linux CFS CPU Scheduler

e Linux schedtool

e Scheduling related system calls

Punjab University College Of Information Technology (PUCIT) 2



Instructor:Arif Butt

fCPU Scheduler

e Scheduling 1s a matter of managing queues to minimize queueing
delay and to optimize performance in a queueing environment

* The process scheduler in a multitasking operating system 1s a
kernel component that decides which process runs, when and for
how long

A multitasking OS comes 1n two flavors:

e In Preemptive multitasking, the scheduler decides when a
process 1S to cease running (e.g., time slice expires) and a new
process 1s to begin running. On many modern OSs, the time slice
i1s dynamically calculated as a fraction of process behavior and
configurable system policy

e In Cooperative multitasking, a process does not stop running
until 1t voluntary decides to do so. (e.g., Mac OS 9 and earlier,
Windows 3.1 and earlier)

Punjab University College Of Information Technology (PUCIT) 3



Instructor:Arif Butt
Preemptlve vs Non-Preemptive Kernels

At any instant of time a system can either be executing in user mode
(executing LOCs written by programmer) or kernel mode (executing LOCs written by the kernel
developer). A process can be inn kernel mode 1n

A) process context (a system call made by programmer)
B) interrupt context

The three types of OS kernel are:
* Preemptive Kernel, a kernel that can be preempted both in A and B
* Reentrant Kernel, a kernel that can be preempted in A only
 Nonpreemptive Kernel, a kernel cannot be preempted

Punjab University College Of Information Technology (PUCIT) 4



: Instructor:Arif Butt
|42 Tvpes of Processes

« When speaking about process scheduling, processes are traditionally
classified into three different classes:

e Interactive Processes: These interact constantly with their users.
When 1nput 1s received, the average delay must fall between 50-150
ms, otherwise the user will find the system to be unresponsive.
Typical interactive programs are command shells, text editors and
graphical applications

e Batch Processes: These do not need user interaction and often
execute 1n the back ground and are often penalized by the
scheduler. Typical batch programs are programming language
compilers, database search engines and scientific computations

 Real-time Processes: These processes should have a short
guaranteed response time with a minimum variance. Typical real-
time programs are multimedia applications, robot controllers, and
programs that collect data from physical sensors

Punjab University College Of Information Technology (PUCIT) 5



ETE Instructor:Arif Butt
,§1’XEes of Processes (cont...)

e [/O-bound processes spend much of their time submitting and waiting
on I/O requests, e.g., waiting on user interactions via the keyboard and
mouse (Text editors)

e Processor-bound processes spend much of their time executing code.
The ultimate example 1s a process executing an infinite loop, or a video
encoder

e These two classifications are not mutually exclusive, as processes can
exhibit both behaviors simultaneously, e.g., a word processor doing
spell checking or macro calculations

Punjab University College Of Information Technology (PUCIT) 6



: : Instructor:Avrif Butt
bptimization Criteria for Process Scheduler

e Maximize CPU utilization

e Maximize throughput

e Maximize fairness

e Minimize waiting time

e Minimize response time

e Minimize turn around time

Punjab University College Of Information Technology (PUCIT) 7



Recap of Process Scheduling Algorithms

SJF/SRTF Priority Round
Based Robin

Select max (w)
Function
Pre-emptive No
Starvation Possible
Throughput -
Response time Hi
Overhead Min
Effect on Penalize
processes short
and /O
bound

min(s)/ max(— wﬂ min(p)
min(s-e)

N/Y No Yes
Possible No Possible
Hi Hi -

Good Good Hi
Hi Hi Hi
Penalize Good -
long balance
process

Instructor:Arif Butt

const
Yes Yes Yes
No Possible No
H/L - Hi
Good - Hi
Min Hi Hi
Penalize May Good
/O favor  balance
bound |/O
bound

Punjab University College Of Information Technology (PUCIT)



Instructor:Arif Butt

Traditional UNIX SVR3 Scheduler

Punjab University College Of Information Technology (PUCIT) 9



gl“raditional UNIX Scheduler (cont...)

0-3
4-7
811

124 - 127

Instructor:Arif Butt

128 Priority values
0-49: Kernel
50-127: User level programs

“ usrpri; (i) = Base; + cpu; (i) + nice;

Where Busel =50

cpy, (i) = DR * cpy (i-1)

nicel =20t0+19

Punjab University College Of Information Technology (PUCIT) 10



Instructor:Arif Butt

gl“raditional UNIX Scheduler (cont...)

Limitations

 With large number of processes, overhead of re-computing process
priorities every second 1s very high

* Since the kernel itself 1s non-preemptive, high priority processes may
have to wait for low priority processes executing in kernel mode

Punjab University College Of Information Technology (PUCIT) 11



g
-

fe

Instructor:Arif Butt

Linux O(1) Scheduler

Punjab University College Of Information Technology (PUCIT) 12



Bit O

Linux O(1) Scheduler

[o]
[5]

[7]

[45]
.
L]

[139]

Priority

o—0
o000
o

o000

Expired array

[0]

Tosklsts
o000
o000

O
o0

Instructor:Arif Butt

struct runqueue{

long nr_running;

struct prio_array *
active;

struct prio_array *
expired;

int static_prio;

int sleep_avg;

struct prio_array{
int nr_active;
long bitmap[S];
struct list head

queue [MAX PRIO];

}

Punjab University College Of Information Technology (PUCIT) 13



Instructor:Arif Butt

ELinux O(1) Scheduler (cont...)

1 Dynamic Priority:
DP = max (100, min (SP = bonus + 5, 139)

Avg Sleep Time (ms) | Bonus / sleep_avg

I Heuristic to determine interactive process

Bonus -5 >= SP/4 — 28

Punjab University College Of Information Technology (PUCIT) 14



Instructor:Arif Butt

ELinux O(1) Scheduler (cont...)

Time slice calculation of a process

m Nice Valve / SP

Initial Parent’s Half Parent’s
Minimum 10 ms Luw High
Default 100 ms Average Zero
Maximum 200 ms High Low
CPU Afflﬁlf)( struct task_struct{
Soft CPU affinity cpumask_t cpus_allowed;
Hard CPU affinity )

Punjab University College Of Information Technology (PUCIT) 15



Instructor:Arif Butt

Linux Kernel Scheduler (cont...)
Limitations of O(1) Scheduler

e [t uses complex heuristics to determine 1f a process 1s I/O bound
or CPU bound to benefit one over the other

Lot of code to manage priority queues, at least 140 per processor

Punjab University College Of Information Technology (PUCIT) 16



Instructor:Arif Butt

Linux CFS Scheduler
Completely Fair Share Scheduler

Punjab University College Of Information Technology (PUCIT) 17



Scheduling Classes and Scheduling Policies

Highest priority Lowest priority

= HE = - | - ULL
Stop Deadline Real Time CFS

SCHED DEADLINE SCHED FIFO  SCHED NORMAL
SCHED_RR SCHED_BATCH
SCHED_ISO
SCHED_IDLEPRIO

Punjab University College Of Information Technology (PUCIT) 18



Instructor:Arif Butt

Llnux CF'S Scheduling Class

struct task_struct{
volatile long state;
int prio;

int static_prio, normal_prio;

struct sched_class * sc ;
struct sched_entity se ;

struct sched_entity{
struct load_wait load ;
struct rb_node r ;
ub4 vruntime;

r
[ .I".I".I".I".I"

i
.-.-'ﬁ: ll,.::;"" :;:".-'

o

Most Need Of CPU

struct rb_node{
struct rb_node * rb_left ;

struct rb_node * rb_right;

a”’f—;r,«f’ G

Gz
i g i

Least Need Of CPU

Punjab University College Of Information Technology (PUCIT)




-Linux CFS Scheduling Class

Context Switch and Time Slice

struct task_struct{ struct sched_entity{
struct load_wait load ;

struct rb_node r ;
ub4 vruntime;

volatile long state;

int prio;

int static_prio, normal_prio;
struct sched_class * sc ;
struct sched_entity se ;

}

struct rb_node{
struct rb_node * rb_left ;
struct rb_node * rb_right;

’ ”.r.r;.r.r.r ?.l"ﬁf
L f f
] "ff;ﬁ ;};grf

..-'H.-'i,.-' ”#f-"‘ff
ﬁ/ﬁrﬁ

? :’ .I"-I".I"-I".I"
] Ml |
v

o
S

%
W
o

Most Need Of CPU Least Need Of CPU

Punjab University College Of Information Technology (PUCIT) 20



-Linux CFS Scheduling Class

vruntime of a nhew process

struct task_struct{ struct sched_entity{
struct load_wait load ;

struct rb_node r ;
ub4 vruntime;

volatile long state;

int prio;

int static_prio, normal_prio;
struct sched_class * sc ;
struct sched_entity se ;

}

struct rb_node{
struct rb_node * rb_left ;
struct rb_node * rb_right;

’ ”.r.r;.r.r.r ?.l"ﬁf
L f f
] "ff;ﬁ ;};grf

..-'H.-'i,.-' ”#f-"‘ff
ﬁ/ﬁrﬁ

? :’ .I"-I".I"-I".I"
] Ml |
v

o
S

%
W
o

Most Need Of CPU Least Need Of CPU

Punjab University College Of Information Technology (PUCIT) 21



-Linux CFS Scheduling Class

What about priorities within a class?

struct task_struct{ struct sched_entity{
struct load_wait load ;

struct rb_node r ;
ub4 vruntime;

volatile long state;

int prio;

int static_prio, normal_prio;
struct sched_class * sc ;
struct sched_entity se ;

}

struct rb_node{
struct rb_node * rb_left ;
struct rb_node * rb_right;

91, Py ynt gy,
N R MR N ) Nl }

gen e it X i |

i | i , i |
P A =N

Most Need Of CPU Least Need Of CPU

Punjab University College Of Information Technology (PUCIT) 22



-Linux CFS Scheduling Class

How CFS handles CPU bound and I/O bound processes?

struct task_struct{ struct sched_entity{
volatile long state; struct load_wait load ;

int prio; struct rb_node rn ;

int static_prio, normal_prio; ub4  vruntime;
struct sched_class * sc ;
struct sched_entity se ;

}

struct rb_node{
struct rb_node * rb_left ;
struct rb_node * rb_right;

91, Py ynt gy,
N R MR N ) Nl }

gen e it X i |

i | i , i |
P A =N

Most Need Of CPU Least Need Of CPU

Punjab University College Of Information Technology (PUCIT) 23



Instructor:Arif Butt

The Linux schedtool Ultility

Punjab University College Of Information Technology (PUCIT)

24



Instructor:Arif Butt

System calls related to Scheduling

Punjab University College Of Information Technology (PUCIT)

25



Instructor:Arif Butt

sttem Calls related to Scheduling

int nice ()

int setpriority()

int sched get priority max()

int sched setscheduler ()

int sched setparam()

int sched rr get interval ()

int sched getaffinity()




Instructor:Arif Butt

'Retrieving and Modifxing nice Value

int nice(int inc);

e This call changes the base priority of the calling process by adding the
inc to the nice value of the calling process. Only a superuser may
specify a negative argument

 On success, the new nice value 1s returned and on error -1 1s returned
and errno 1s set appropriately

e Since nice () may legitimately return a value of -1 on successful call,
we must test for error by setting errno to 0 prior to the call, and then
checking for a -1 return status and a nonzero errno value after the call

 In case of a negative increment, the function invokes the capable ()
function to verify whether the process has a CAP SYS NICE
capability

e The nice () system call affects only the process that invokes it. It 1s

maintained for backward compatibility only; it has been replaced by
the setpriority () system call

Punjab University College Of Information Technology (PUCIT) 27



Retrlevmg and Modifying nice Value (cont...)

int getpriority(int which,int who);
int setpriority(int which,int who,int prio);

e The getpriority () and setpriority () system calls

allow a process to get and set its own nice value or that of another
process

e Both system calls take the argument which and who, 1identifying
the process(es) whose priority is to be retrieved or modified. The
which argument determines how who 1s interpreted. The which
argument takes on of following values:

« PIRO PROCESS: Operates on the process whose PID equals who. If
who 1s 0, use the caller's PID

« PRIO GRP: Operate on all of the members of the process group whose
PGID equals who. If who 1s 0, use the caller's process group

« PRIO USER: Operate on all processes whose RUID equals who. If who
1s 0, use the caller's RUID

Punjab University College Of Information Technology (PUCIT) 28



Instructor:Arif Butt

fGetting Prioritx Ranges

int sched get priority max(int policy);
int sched get priority min(int policy);

* Above two calls return the maximum/minimum priority value that can
be used with the scheduling algorithm 1dentified by policy

e Processes with numerically higher priority values are scheduled before
processes with numerically lower priority values

e Linux allows the static priority value range 1 to 99 for SCHED FIFO
and SCHED RR and the priority 0 for SCHED OTHER and
SCHED BATCH

* Scheduling priority ranges for the various policies are not alterable

Punjab University College Of Information Technology (PUCIT) 29



Gettlng Schedullng Polch/Rellngulshlng CPU

int sched getscheduler (pid t pid);

* The sched getscheduler () queries the scheduling policy currently

applied to the process/thread i1dentified by pid. If pid equals 0, the policy
of the calling thread will be retrieved. On success, returns the policy
number, 0 for SCHED NORMAL, 1 for SCHED FIFO and so on

int sched yield();

e A process may voluntarily relinquish the CPU in two ways: by
invoking a blocking system call or by calling sched yield()

e [f there are any other queued runnable processes at the same priority
level, then the calling process is placed at the back of the queue, and
the process at the head of the queue 1s scheduled

e [f no other runnable processes are queued at this priority, then
sched yield () does nothing, the calling process simply continues

using the CPU

Punjab University College Of Information Technology (PUCIT) 30



Instructor:Arif Butt

¢ :T'hings To Do

0.K., and nowyou'll do
exactly what I'm telling you !

If you have problems visit me in counseling hours.

Punjab University College Of Information Technology (PUCIT) 31



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

