
1Punjab University College Of Information and Technology (PUCIT)

Instructor:Arif Butt

Lecture # 4.7
Multi-threaded Programming

Course: Advanced Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information and Technology (PUCIT)

Agenda
Instructor:Arif Butt

● Concurrent / Parallel Programming
● Overview of Threads
● Thread Implementation Models
● Linux Implementations of POSIX Threads

● LinuxThreads
● NPTL

● Creating and managing threads using pthread API (NPTL)
● Thread Attributes
● Threads and Signals
● Threads and fork()
● Thread Cancellation

3Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Concurrent / Parallel
Programming

4Punjab University College Of Information And Technology (PUCIT)

Sequential Programming
Instructor:Arif Butt

1

3

2

Suppose we want to add eight numbers x
1
, x

2
, x

3
, x

8

There are seven addition operations and if each
operation take 1 CPU cycle, the entire operation will
take seven cycles

 x
1
+ x

2
 + x

3
+ x

4
 + x

5
+ x

6
 + x

7
+ x

8

7

.

.

.

5Punjab University College Of Information And Technology (PUCIT)

Concurrent/Parallel Programming
Instructor:Arif Butt

Suppose we have 4xCPUs or a 4xCore CPU, the seven addition
operations can now be completed in just three CPU cycles, by
dividing the task among different CPUs

CPU4

x
1
 + x

2

CPU 1

CPU1 CPU3CPU2

CPU2

CPU1

1st CPU cycle

2nd CPU cycle

3rd CPU cycle

x
3
 + x

4
x

5
 + x

6
x

7
 + x

8

R
1
+ R

2
R

3
+ R

4

R
5
+ R

6

6Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Multiple single threaded processes
● Use fork() to create a new process for handling every new

task, the child process serves the client process, while the parent
listens to the new request

● Possible only if each slave can operate in isolation
● Need IPC between processes
● Lot of memory and time required for process creation

Multiple threads within a single process
● Create multiple threads within a single process
● Good if each slave need to share data
● Cost of creating threads is low, and no IPC required

Single process multiple events
● Use non-blocking or asynchronous I/O, using select() and
poll()system calls

Ways to Achieve Concurrency

7Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Overview of

Threads

8Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Processes and Threads
Every process has two characteristics:

● Resource ownership- process includes a virtual address
space to hold the process image

● Scheduling- follows an execution path that may be
interleaved with other processes

These two characteristics are treated independently by the
operating system. The unit of resource ownership is referred to
as a process, while the unit of dispatching is referred to as a
thread

A thread is an execution context that is independently scheduled,
but shares a single addresses space with other threads of the
same process

9Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

 Similarities between Processes & Threads:
● Like a process, a thread can also be in one of many states

(new, ready, running, block, terminated)
● Only one thread can be in running state (single CPU)
● Like a process a thread can create a child thread

 Differences between Processes & Threads:
● No automatic protection in threads
● Every process has its own address space, while all other

threads within a process executes within the same
address space

Processes and Threads (cont...)

10Punjab University College Of Information And Technology (PUCIT)

Single vs Multi-threaded Process
Instructor:Arif Butt

11Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Temporal Multi-threading:Only one thread of instruction can execute in any given pipeline stage at a time
Simultaneous Multi-threading (SMT/HT): More than one thread of instruction can execute in any given
pipeline stage at a time. (SMT/HT is a multi-threading on a super scalar architecture)

Pictorial View of a Multi-threaded Process

12Punjab University College Of Information And Technology (PUCIT)

 Multi-Threaded Process
Instructor:Arif Butt

Threads within a process share :
● PID, PPID, PGID, SID, UID, GID
● Controlling Terminals
● Code and Data Section
● Global Variables
● Open files via PPFDT
● Signal Dispositions
● Umask value
● Current Working Directory
● Interval Timers
● CPU time consumed
● Resource Limits
● Nice value
● Record locks (using fcntl())

Threads have their own:
● Thread ID
● CPU Context (PC, and other registers)

● Stack
● State
● The errno variable
● Priority
● CPU affinity
● Signal mask

13Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Thread Implementation Models

14Punjab University College Of Information And Technology (PUCIT)

Thread Implementation Models (M:1)
Instructor:Arif Butt

In Many-to-one (M:1) threading implementation, all of the details of
thread creation, termination, scheduling, synchronization, and so on are
handled entirely within the user-space. Kernel knows nothing about the
existence of multiple threads within the process
Advantages:

● Thread operations are fast as no mode switch is required
● User level threads can be used even if the underlying platform does not

support multithreading
Disadvantages:

● When a user-level thread makes a blocking system call, e.g., read(),
the entire process is blocked

● Since the kernel is unaware of the existence of multiple threads within
the process, it CANNOT schedule separate threads to different CPUs
on multiprocessor hardware

15Punjab University College Of Information And Technology (PUCIT)

Thread Implementation Models (1:1)
Instructor:Arif Butt

In one-to-one (1:1) threading implementation, each thread maps onto a
separate kernel scheduling entity (KSE). All of the details of thread
creation, termination, scheduling, synchronization and so on are handled
by system calls inside the kernel
Advantages:
● When a kernel-level thread makes a blocking system call, e.g., read(),

only that thread is blocked
● Since the kernel is aware of the existence of multiple threads within the

process, it can schedule separate threads to different CPUs on
multiprocessor hardware

Disadvantages:
● Thread operations are slow as a switch into kernel mode is required
● Overhead of maintaining a separate KSE for each of the threads in an

application place a significant load on the kernel scheduler, degrading
overall system performance

16Punjab University College Of Information And Technology (PUCIT)

Thread Implementation Models (M:N)
Instructor:Arif Butt

The many-to-many (M:N) threading implementation, aim to combine the
advantages of the 1:1 and M:1 models, while eliminating their
disadvantages. Each process can have multiple associated KSEs, and
several threads may map to each KSE

Disadvantages:
● The major disadvantage of M:N model is its complexity. The task of

thread scheduling is shared between the kernel and the user-space
threading library, which must cooperate and communicate information
with one another

The M:N model was initially considered for the NPTL threading implementation, but
rejected as it required much changes to the Kernel. The Linux threading
implementations LinuxThreads and NPTL employ the 1:1 model

17Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Linux Implementation of
POSIX Threads

18

Instructor:Arif Butt

LinuxThreads is the original Linux threading implementation, developed by
Xavier Leroy. In addition to the threads created by the application, LinuxThreads
creates an additional “manager” thread that handles thread creation and
termination. Threads are created using a clone(), with the flags mentioned
below: (threads share virtual memory, file descriptors, file system-related
information (umask, root directory, pwd,...) and signal disposition)

CLONE_VM | CLONE_FILES | CLONE_FS | CLONE_SIGHAND

Deviations from specified behavior
● getpid() returns a different value in each of the threads of a process
● getppid() returns the PID of the manager thread
● If one thread creates a child using fork(), then only the thread that created the child process can
wait() for it

● If a thread calls exec(), then SUSv3 requires that all other threads are terminated. While this is not so
in LinuxThreads

● Threads don't share PGIDs, and SIDs
● Threads don't share resource limits
● Some versions of ps(1) show all of the threads in a process (including the manager thread) as separate

items with distinct PIDs
● CPU time returned by times() and resource usage information returned by getrusage() are per

thread
● Threads don't share nice value set by setpriority()

LinuxThreads

19

Instructor:Arif Butt

The Native POSIX Threads Library (NPTL) is is the modern Linux Threading
implementation, developed by Drepper and Ingo Molnar, designed to address
most of the shortcomings of LinuxThreads. It adheres more closely to SUSv3
specification. Applications that employ large number of threads scale much
better under NPTL than under LinuxThreads. NPTL threads does not require an
additional manager thread. Supported by Linux 2.6 onwards. Threads are created
using clone(), that specifies all the flags of LinuxThreads and more:

CLONE_VM | CLONE_FILES | CLONE_FS | CLONE_SIGHAND |

CLONE_THREAD | CLONE_SETTLS | CLONE_PARENT_SETTID |

CLONE_CHILD_CLEARTID | CLONE_SYSVSEM

To discover thread implementation on your system give following command:
$ getconf GNU_LIBPTHREAD_VERSION

$ getconf GNU_LIBC_VERSION

On systems that provides both NPTL and LinuxThreads, if you want to run a
multithreaded program with LinuxThreads, you set the following environment
variable to a kernel version that doesn't provided support for NPTL (e.g., 2.2.5)

$ export LD_ASSUME_KERNEL=2.25

NPTL Threads

20Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Pthreads API

21Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

The pthread API defines a number of data types and should be used to ensure the
portability of programs and mostly defined in /usr/include/x86_64-linux-
gnu/bits/pthreadtypes.h. Remember you should not use the C == operator to
compare variables of these types

Pthreads API

Data Type Description

pthread_t Used to identify a thread

pthread_attr_t Used to identify a thread attributes object

pthread_mutex_t Used for mutex

pthread_mutexattr_t Used to identify mutex attributes object

pthread_cond_t Used for condition variable

pthread_cond_attr_t Used to identify condition variable attributes object

pthread_key_t Key for thread specific data

pthread_once_t One-time initialization control context

pthread_spinlock_t Used to identify spinlock

pthread_rwlock_t Used for read-write lock

pthread_rwlockattr_t Used for read-write lock attributes

pthread_barrier_t Used to identify a barrier

pthread_barrierattr_t Used to identify a barrier attributes object

22Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● This function starts a new thread in the calling process. The new
thread starts its execution by invoking the start function which is
the 3rd argument to above function

● On success, the TID of the new thread is returned through 1st
argument to above function

● The 2nd argument specifies the attributes of the newly created
thread. Normally we pass NULL pointer for default attributes.

● The 4th argument is a pointer of type void which points to the value
to be passed to thread start function. It can be NULL if you do not
want to pass any thing to the thread function. It can also be address
of a structure if you want to pass multiple arguments

Pthreads API (cont...)
int pthread_create(pthread_t *tid, const pthread_attr_t
 *attr, void *(*start)(void *), void *arg) ;

23Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● This function terminate the calling thread
● The status value is returned to some other thread in the calling

process, which is blocked on the pthread_join() call
● The pointer status must not point to an object that is local to

the calling thread, since that object disappears when the thread
terminates

Ways for a thread to terminate:
● The thread function calls the return statement
● The thread function calls pthread_exit()
● The main thread returns or call exit()
● Any sibling thread calls exit()

Pthreads API (cont...)
void pthread_exit(void *status);

24Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

int pthread_join(pthread_t tid, void **retval);
● Any peer thread can wait for another thread to terminate by

calling pthread_join() function, similar to waitpid().
Failing to do so will produce the thread equivalent of a zombie
process

● The 1st argument is the ID of thread for which the calling thread
wish to wait. Unfortunately, we have no way to wait for any of
our threads like wait()

● The 2nd argument can be NULL, if some peer thread is not
interested in the return value of the new thread. Otherwise, it can
be a double pointer which will point to the status argument of the
pthread_exit()

Pthreads API (cont...)

25Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Thread Creation
Proof of Concept
t0.c – t4.c

26Punjab University College Of Information And Technology (PUCIT)

Returning value from a Thread Function
Instructor:Arif Butt

● A thread function can return a pointer to its parent/calling thread,
and that can be received in the 2nd argument of the
pthread_join() function

● The pointer returned by the pthread_exit() must not point to
an object that is local to the thread, since that variable is created in
the local stack of the terminating thread function

● Making the local variable static will also fail. Suppose two
threads run the same thread_function(), the second thread
may over write the static variable with its own return value and
return value written by the first thread will be over written

● So the best solution is to create the variable to be returned in the
heap instead of stack

27Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Returning Value from a Thread Function
Proof of Concept
rv1.c – rv2.c

28Punjab University College Of Information And Technology (PUCIT)

Creating Arrays of Threads
Instructor:Arif Butt

● You may need to create large number of threads for dividing the
computational tasks as per your program logic

● At compile time, if you know the number of threads you need,
you can simply create an array of type pthread_t to store the
thread IDs

● If you do not know at compile time, the number of threads you
need, you may have to to allocate memory on heap for storing the
thread IDs

● The maximum number of threads that a system allow can be seen
in /proc/sys/kernel/threads-max file. There are
however, other parameters that limit this count like the size of
stack the system needs to give to every new thread

29Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Creating Arrays of Threads
Proof of Concept

array_threads1.c – array_threads3.c

30Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

matrix_mul.c
Program should read a text file containing the size and data of two
matrices X

axb
and Y

bxc
. Create two 2xD dynamic integer arrays, and

populate them as per the matrices data in the file. Create the third
2xD dynamic integer array Z

axc
, which will contain the product of

two input matrices. Create n threads in heap where n=a*c. Each
thread should compute one value of the product matrix. Once all
the threads are done, the main thread should display the input
matrices and the product matrix on stdout

31Punjab University College Of Information And Technology (PUCIT)

Point to Ponder
Instructor:Arif Butt

errno is a global per-process variable used to store
the error number occurred in the last failed system
call. What problem can occur due to this shared
variable in a multi-threaded program?

● The problem is that two or more threads can encounter errors, all
causing the same errno variable to be set. Under these
circumstances, a thread might end up checking errno after it has
already been updated by another thread

● Solution is to make errno local to every thread; so setting it in
one thread does not affect its value in any other thread. This can
be achieved by compiling with -D_REENTRANT flag to gcc

32Punjab University College Of Information And Technology (PUCIT)

Point to Ponder
Instructor:Arif Butt

Why all multi-threaded code must be compiled with
-D_REENTRANT defined? What difference does it
make?

Compiling your multi-threaded code with -D_REENTRANT affects the
include file in three ways:

● The errno refers to thread specific error location rather than global
variable

● Library functions are no longer defined as macros; e.g. getc() and
putc(). In multi-threaded programs, some standard I/O library
functions require additional locking which macros don't perform, so
we must call function instead

● The reentrant versions of the standard library functions are used, e.g.,
instead of gethostbyname(), i ts reentrant equivalent
gethostbyname_r() is used

33Punjab University College Of Information And Technology (PUCIT)

Point to Ponder
Instructor:Arif Butt

﻿In a multithreaded process, all threads have the same PID
as returned by the getpid() system call. How to
uniquely identify a thread within a multi-threaded
process?

We can use gettid() and pthread_self(). But must keep in mind
the following difference between the values returned by these two calls

Proof of Concept: id_threads1.c, id_threads2.c

Since gettid() is Linux specific and therefore not portable. So to
uniquely identify a thread, use combination of process ID as returned by
getpid() and POSIX thread ID as returned by pthread_self()

TID returned by gettid() TID returned by pthread_self()

Assigned by kernel, similar to PIDs POSIX TIDs maintained by thread implementation

May be reused after a very long time
once the PID counter reach the max value

Reused after the completion of the thread

Unique across the system Unique within the process only

34Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

THREAD ATTRIBUTES

35Punjab University College Of Information And Technology (PUCIT)

Thread Attributes
Instructor:Arif Butt

Every thread has a set of attributes which can be set before creating
it. If we pass a NULL as second argument to pthread_create()
function, the default thread attributes are used. The default value of
thread attributes are shown in table below:

Attribute Default Value Description

detachstate PTHREAD_CREATE_JOINABLE Joinable by other threads

stackaddr NULL Stack allocated by system

stacksize NULL 2 MB

priority --- Priority of calling thread is used

policy SCHED_OTHER Determined by system

inheritsched PTHREAD_INHERIT_SCHED Inherit scheduling attributes
from creating thread

36Punjab University College Of Information And Technology (PUCIT)

Detach State (Avoiding Zombie Threads)
Instructor:Arif Butt

Joinable Thread:
A joinable thread (like a process) is not automatically cleaned up by
GNU/LINUX when it terminates. The thread's exit status hangs around
in system until another thread calls pthread_join() to obtain its
return value. Only then its resources are released. For example
whenever we want to return data from child thread to parent thread the
child thread must be a joinable thread
Detached Thread:
A detachable thread is cleaned up automatically when it terminates.
Since a detached thread is immediately cleaned up, another thread may
not wait for its completion by using pthread_join() to obtain its
return value. For example suppose the main thread crates a child thread
to do back up of a file and the main thread continue its execution.
When the backup is finished , the second thread can just terminate.
There is no need for it to rejoin the main thread. A thread can detach
itself using pthread_detach(pthread_self()) call

37Punjab University College Of Information And Technology (PUCIT)

Steps to Specify Customized Thread Attributes
Instructor:Arif Butt

● Create a pthread_attr_t object

● Call pthread_attr_init(), passing it a pointer of
above object

● Modify the attribute object to contain the desired
attribute value using the appropriate setters

● Pass a pointer to the attribute object when calling
pthread_create()

● Destroy pthread attribute object by calling
pthread_attr_destroy()

38Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● The pthread_attr_init() function initializes the thread
attributes object pointed to by attr with default attribute values.
After this call, individual attributes of the object can be set using
various related functions (next slide), and then the object can be
used in one or more pthread_create() calls

● When a thread attributes object is no longer required, it
should be destroyed using the pthread_attr_destroy()
function. Destroying a thread attributes object has no effect on
threads that were created using that object

Pthreads API (cont...)
﻿int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);

39Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

This function sets the detach state attribute of the thread attributes object
referred to by attr to the value specified in the second argument
detachstate, which can take following two values:
● PTHREAD_CREATE_DETACHED
● PTHREAD_CREATE_JOINABLE

Pthreads API (cont...)
int pthread_attr_setdetachstate(pthread_attr_t*attr,
 int detachstate);

int pthread_attr_getdetachstate();
int pthread_attr_setdetachstate();
int pthread_attr_getstacksize();
int pthread_attr_setstacksize();
int pthread_attr_getstackaddr();
int pthread_attr_setstackaddr();
int pthread_attr_getschedpolicy();
int pthread_attr_setschedpolicy();
int pthread_attr_getinheritsched();
int pthread_attr_setinheritsched();

Associated getters and setters of thread attribute object

40Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Thread Attributes
Proof of Concept
attr_threads.c

41Punjab University College Of Information And Technology (PUCIT)

Point to Ponder
Instructor:Arif Butt

If a signal is sent to a multi-threaded process. Which
thread will receive that signal?

The UNIX signal model was designed with the UNIX process model in
mind, so there are some significant conflicts between the signal and thread
models. Combining signals and threads is complex and should be avoided
whenever possible. Some key points to be kept in mind are:

● Signal handlers are per-process
● Signal masks are per-thread
● Sending a signal using kill(1) or kill(2) will terminate the

process. You can use pthread_kill(3) to send a signal to another
thread in the same process

● If one thread ignores a signal, then that signal is ignored by all threads

42Punjab University College Of Information And Technology (PUCIT)

Point to Ponder
Instructor:Arif Butt

If one of the threads executes the exec() system
call, what happens?

● When any thread calls one of the exec() functions, the calling
program is completely replaced and all threads, except the one that
called exec(), vanish immediately

● None of the threads executes destructors for thread-specific data or
calls cleanup handlers

● All the pthread objects (mutexes and condition variables) disappear as
the new program overwrites the memory of the process

● After an exec() the thread ID of the remaining thread is unspecified

43Punjab University College Of Information And Technology (PUCIT)

Point to Ponder
Instructor:Arif Butt

If one thread executes the fork() system call, does the
new process duplicate only the calling thread or all
threads? Is the child process single threaded or multi-
threaded?

● The child process is created with a single thread – the one that called the
fork()

● It is recommended that a fork(), in a multithreaded process should always
be followed by an immediate exec() call, so that all the global variables as
well as all pthread objects (mutexes and condition variables) disappear, as
the child program overwrites the memory of the process

● If there is no exec() after the fork(), then the state of global variables as
well as all pthread objects (mutexes and condition variables) are preserved in
the child, which may cause problems in the child program. So for programs
that uses fork() that is not followed by an exec(), the pthreads API
provides a mechanism for defining fork handlers using the function
pthread_atfork(). These fork handlers are preserved after a fork(),
but not preserved after an exec()

44Punjab University College Of Information And Technology (PUCIT)

Point to Ponder
Instructor:Arif Butt

What if the main thread want to cancel another thread or
threads? Suppose multiple threads are searching through
a database, if one thread returns data, remaining threads
might need to be cancelled

● A thread can call pthread_cancel() to request that another thread be
cancelled by mentioning the TID of the target thread

● This cancellation may cause a problem if the target thread is holding some
resources which it must free later

● To counter this possibility, it is possible for a thread to make itself cancellable
or un-cancellable by calling a function pthread_setcancelstate()

● Moreover, a cancellable thread may also set its cancel type by calling a
function pthread_setcanceltype(), which can be asynchronous, i.e.,
thread may be cancelled at any point in its execution or deferred, in which
case the cancellation request is queued, until the target thread reaches next
cancellation point. (Places in a thread's execution where it can be cancelled are
called cancellation points)

45Punjab University College Of Information And Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

