
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 5.4
Programming with Shared Memory

Course: Advance Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● Introduction to Shared Memory

● Two Implementations of Shared Memory

● System-V Shared Memory

● POSIX Shared Memory

● Creating/Opening a SystemV Shared Memory Object

● Attaching/Detaching a Shared Memory Object

● Reading/Writing in the Shared Memory

● Deleting the Shared Memory Object

3Punjab University College Of Information Technology (PUCIT)

Introduction to Shared Memory
Instructor:Arif Butt

● Shared Memory allows two or more processes to share a
memory region or segment of memory for reading and writing
purposes

● The problem with pipes, fifo and message queue is that mode
switches are involved as the data has to pass from one process
buffer to the kernel buffer and then to another process buffer

● Since access to user-space memory does not require a mode
switch, therefore, shared memory is considered as one of the
quickest means of IPC

4Punjab University College Of Information Technology (PUCIT)

APIs to Shared Memory
Instructor:Arif Butt

Interface System-V API POSIX API

Header file <sys/shm.h> <mqueue.h>

Data Structure shmid_ds File descriptor

Create/open shmget(), shmat() shm_open()

Close shmdet() shm_unlink()

Perform IPC Access memory mmap(),memcpy()

Control operations shmctl()

5Punjab University College Of Information Technology (PUCIT)

Creating/Opening Shared Memory Segment
Instructor:Arif Butt

● The shmget() system call creates a new shared memory segment or
obtains the identifier of an existing segment. The contents of a newly
created shared memory segment are initialized to 0. The return value is
the ID of the shared memory segment

● The first argument key can be the constant IPC_PRIVATE or can be
achieved using ftok() library call (as discussed in MQ session)

● The second argument size specifies the desired size of the segment in
bytes. Kernel round it up to next multiple of the system page size. If we
are using shmget() to obtain the identifier of an existing segment,
then size has no effect on the segment

● The shmflg argument specifies the permissions to be placed on a new
shared memory segment or checked against an existing segment. In
addition, it can be a bit wise OR of constants like IPC_CREAT and
IPC_EXCL

int shmget(key_t key, size_t size, int shmflg);

6Punjab University College Of Information Technology (PUCIT)

Using Shared Memory Segment
Instructor:Arif Butt

● The shmat() system call attaches the shared memory segment
identified by shmid to the address space of the calling process

● The second argument shmaddr is the address where the memory
segment will be attached. If we want the OS Kernel to select a
suitable address, we keep it NULL

● The third argument shmflg can be SHM_RDONLY to attach the
shared memory segment for read-only access. We can place a
zero over there for giving both read and write access

● On success shmat() returns the address at which the shared
memory segment is attached, which can be treated like a normal
C pointer. We can assign the return value from shmat() to a
pointer of some intrinsic data type or a programmer defined
structure

void *shmat(int shmid, const void *shmaddr, int shmflg);

7Punjab University College Of Information Technology (PUCIT)

Using Shared Memory Segment
Instructor:Arif Butt

● When a process no longer needs to access a shared memory segment, it
can call shmdt() to detach the segment from its address space

● The only argument to the call shmaddr identifies the segment to be
detached. It should be a value returned by a previous call to shmat()

● Detaching a shared memory segment is not the same as deleting it.
Deletion can be performed using the shmctl()

● A child created by fork() inherits its parent’s attached shared
memory segments. Thus, shared memory provides an easy method of
IPC between parent and child. However, after an exec(), all attached
shared memory segments are detached

● Shared memory segments are also automatically detached on process
termination

int shmdt(const void *shmaddr);

8Punjab University College Of Information Technology (PUCIT)

Using Shared Memory Segment
Instructor:Arif Butt

● The shmctl() system call is used to perform control operations on
the shared memory segment specified in its first argument shmid

● One of the basic control operation is deletion of the shared memory
segment. This can be done by giving IPC_RMID as the cmd in the
second argument. This will destroy the memory segment after the last
process detaches it

● For deletion operation of shared memory the third argument is kept
NULL

int shmctl(int shmid, int cmd,struct shmid_ds *buf);

9Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Sys-V Shared Memory
Proof of Concept
writer.c, reader.c

10Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

