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Abstract

Read-copy update is a mechanism for con-
structing highly scalable algorithms for access-
ing and modifying read-mostly data structures,
while avoiding cacheline bouncing, memory
contention, and deadlocks that plague highly
scalable operating system implementations. In
particular, code that performs read-only ac-
cesses may be written without any locks,
atomic instructions, or writes to shared cache-
lines, even in the face of concurrent updates.
We reported on the basic mechanism last
year, and have produced a number of Linux™
patches implementing and exploiting read copy
update.

This paper evaluates performance of a number
of read copy update implementations for non-
preemptive Linux kernels, and outlines a new
implementation targeted to preemptive Linux
kernels.

1 Introduction

The past year has seen much discussion of
read-copy update and the design and coding
of a number of read-copy-update implemen-
tations. These implementations make a num-
ber of different tradeoffs, and this paper takes
a first step towards evaluating them.

Comparison of read-copy update to other con-
current update mechanisms has been done else-
where [McK01b, Linder02a]. These com-
parisons have shown that read-copy update
can greatly simplify and inprove performance
of code accessing read-mostly linked-list data
structures (such as FD management tables and
dcache data structures). Evaluation of read-

The views expressed in this paper are the au-
thors’ only, and should not be attributed to
SuSE or IBM.
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copy update in other environments has shown
that the read-copy update can also improve per-
formance of code modifying linked-list data
structures when there is a high system-wide ag-
gregate update rate across all such data struc-
tures [McK98a].

Section 2 fills in some background on read-
copy update. Section 3 gives an overview of
the design choices of the Linux read-copy up-
date non-preemptive implementations. Sec-
tion 4 compares performance and complexity
of these implementations, with emphasis on
the grace-period latency that determines the in-
cremental memory overhead compared to non-
read-copy-update locking algorithms. Sec-
tion 5 overviews the implementations, focus-
ing on call_rcu() , scheduler instrumenta-
tion, and timer processing. Section 5 also de-
scribes how thercu algorithm may be adapted
to a preemptible kernel. Section 6 describes
future plans, Appendix A provides implemen-
tation details, and Appendix B discusses mem-
ory ordering issues encountered when inserting
into a read-copy-protected data structure.

2 Background

This section gives a brief overview of read-
copy update, more details are available else-
where [McK98a, McK01a, McK01b]. Sec-
tion 2.1 contains a glossary of read-copy-
update-related terms, Section 2.2 presents con-
cepts, Section 2.3 presents the read-copy-
update API, Section 2.4 describes the IP route
cache patch that uses read-copy update, Sec-
tion 2.5 describes the module race reduction
patch that uses read-copy update, and Sec-
tion 2.6 gives an overview of how read-copy
update may be used in a preemptive kernel.

2.1 Glossary

Live Variable: A variable that might be ac-
cessed before it is modified, so that its
current value has some possibility of in-
fluencing future execution state.

Dead Variable: A variable that will be modi-
fied before it is next accessed, so that its
current value cannot possibly have any in-
fluence over future execution state.

Temporary Variable: A variable that is only
live inside a critical section. One example
is a auto variable used as a pointer while
traversing a linked list.

Permanent Variable: A variable that is live
outside of critical sections. One example
would be the header for a linked list.1

Quiescent State:A point in the code where
all of the current entity’s temporary vari-
ables that were in use before a specified
time are dead. In a non-preemptive Linux
kernel, a context switch is a quiescent
state for CPUs. In a preemptive Linux
kernel, a voluntary context switch is a qui-
escent state, but for threads. In this paper,
quiescent states are global events, as op-
posed to being associated with a specific
data structure.

Grace Period: Time interval during which all
entities (CPUs or tasks, as appropriate)
pass through at least one quiescent state.
Note that any time interval containing a
grace period is itself a grace period.

The key point underlying read-copy update is
that if you remove all permanent-variable ref-
erences to a given item, then wait for a grace

1Yes, it is possible for the same variable to be tempo-
rary sometimes and permanent at other times. However,
this can lead to confusion, so is not generally recom-
mended.
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Figure 1: Race Between Deletion and Search

period to expire, there can be no remaining ref-
erences to that item. The item can then be
safely freed up. This process is described in
more detail in the next section.

2.2 Concepts

Read-copy update allows lock-free read-only
access to data structures that are being con-
currently modified. The accessing code needs
neither locks nor atomic instructions, and can
often be written as if the data structure were
unchanging, in a “CS 101” style. Read-copy
update is typically applied to linked data struc-
tures where the read side code traverses links
through the data structure in a single direction.

Without special action on the update side, the
read side would be prone to races with dele-
tions, as illustrated in Figure 1, which shows
two tasks searching a list that contains an ele-
ment that is concurrently deleted by a third task
(signified by the line labelled "Route Cache El-
ement"). To handle such race conditions, the
update side uses a two-phase update discipline:

1. Remove permanent-variable pointers to
the item being deleted.

2. After a grace period has elapsed, free up
the item’s memory.
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Figure 2: Read-Copy Update Handling Race

The grace period is not a fixed time duration,
but is instead inferred by checking for per-
CPU quiescent states, such as context switches.
Since kernel threads are prohibited from hold-
ing locks across a context switch, they also
prohibited from holding pointers to data struc-
tures protected by those locks across context
switches–after all, the entire data structure
could well be deleted by some other CPU at
any time the lock is not held.

Therefore, a simple implementation of read-
copy update might declare the grace period
over once it observed each CPU performing a
context switch. Now, the first phase removed
all global pointers to the item being deleted,
and kernel threads are not permitted to hold
references to the item across a context switch.
Therefore, CPUs that have performed a context
switch after the completion of the first phase
have no way to gain a reference to the item
being deleted. Thus, once all CPUs have per-
formed a context switch, it is safe to free up the
item being deleted from the list.

With this approach, searches already in
progress when the first phase executes might
(or might not) see the item being deleted. How-
ever, searches that start after the first phase
completes are guaranteed to never reference
this item. Therefore, the item may be safely
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void synchronize_kernel(void);
struct rcu_head {

struct list_head list;
void (*func)(void *obj);
void *arg;

};
void call_rcu(struct rcu_head

*head,
void (*func)(void *arg),
void *arg);

Figure 3: Read-Copy Update API

freed once all searches in progress at the end
of the first phase have completed, as shown in
Figure 2.

Efficient mechanisms for determining the du-
ration of the grace period are key to read-copy
update.

2.3 Read-Copy Update API

Figure 3 shows the external API for read-copy
update. Thesynchronize_kernel()
function blocks for a full grace period. This is
a simple, easy-to-use function, but imposes ex-
pensive context-switch overhead on its caller.
It may not be called with locks held or from
BH/IRQ context.

Another approach, taken bycall_rcu() is
to schedule a function to be called after the end
of a full grace period. Sincecall_rcu()
never sleeps, it may be called with locks held
or from BH (and perhaps also IRQ) con-
text. The call_rcu() function uses its
struct rcu_head argument to store the
specified callback function and argument, and
the read-copy-update subsystem then uses this
struct to schedule the callback invocation. An
rcu_head is often placed within a structure
being protected by read-copy update.

A typical use ofcall_rcu is shown in Fig-

1 void delete(struct el *p)
2 {
3 spin_lock(&list_lock);
4 p->next->prev = p->prev;
5 p->prev->next = p->next;
6 spin_unlock(&list_lock);
7 call_rcu(&p->my_rcu_head,
8 my_free, p);
9 }

Figure 4: Read-Copy Dequeue From Doubly-
Linked List

ure 4, where an element is deleted from a
circular doubly linked list with a header ele-
ment. Heremy_free() is a wrapper around
kfree() , and the lock is used only to seri-
alize concurrent calls todelete() . Since
the element’snext andprev pointers are un-
affected, and sincemy_free() is not called
until a grace period has elapsed, non-sleeping
reading tasks may traverse the list concurrently
with the deletion of the element without dan-
ger of a NULL pointer or a pointer to the freel-
ist. This is a common read-copy-update idiom:
kfree() is replaced by acall_rcu() to a
function that is a wrapper aroundkfree() .

2.4 Read-Copy Update and IP Route Cache

Read-copy update has been used in a num-
ber of OSes, including several patches to
Linux [McK01b, Linder02a]. This section de-
scribes how read-copy update may be used in
the Linux IP route cache. This modification
was done to validate the RCU implementa-
tions, rather than in response to a known per-
formance problem in the IP route cache.

The Linux IP route cache uses a reader-writer
lock, so multiple searches may proceed in par-
allel. However, the multiple readers’ lock
acquisitions result in the cacheline bouncing.
Read-copy update may be used to eliminate
this read side cacheline bouncing:
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1 @@ -314,13 +314,13 @@
2 static inline void rt_free(
3 struct rtable *rt)
4 {
5 - dst_free(&rt->u.dst);
6 + call_rcu(&rt->u.dst.rcu_head,
7 (void (*)(void *))dst_free,
8 &rt->u.dst);
9 }

10
11 static inline void rt_drop(
12 struct rtable *rt)
13 {
14 ip_rt_put(rt);
15 - dst_free(&rt->u.dst);
16 + call_rcu(&rt->u.dst.rcu_head,
17 + (void (*)(void *))dst_free,
18 + &rt->u.dst);
19 }

Figure 5: dst_free() Modifications

1. Delete all calls toread_lock() ,
read_unlock() ,
read_lock_bh() , and
read_unlock_bh() .

2. Replace all calls towrite_lock() ,
write_unlock() ,
write_lock_bh() , and
write_unlock_bh() with the
corresponding member of the
spin_lock() family of primitives.

3. Add rmb() primitives on the read side
between the fetch of the pointer and its
dereferencing. These should be replaced
by read_barrier_depends()
when it becomes available.

4. Replace all calls todst_free() with a
call tocall_rcu() which causes
dst_free() to be invoked after the
end of a following grace period, as shown
in Figure 5.

This results in a significant decrease in
ip_route_output_key() overhead dur-

Figure 6: IP Route Cache Speedup Using rcu

ing a workload that transmits a fixed number
of random-sized IP packets to a single desti-
nation, as shown in Figure 6. This workload
was run on an 8-CPU 700MHz PentiumTM

III XeonTM with 1MB L2 cache and 6GB of
memory.

Figure 7 shows the total non-idle kernel pro-
file ticks for this same workload. This data
shows the IP route cache speedup is real; it
is not happening at the expense of other pro-
cessing in the system. The overall speedup
is quite small, as expected, given that the
change was not motivated by a known per-
formance problem.2 More compelling Linux-
based read-copy-update results include a 30%
improvement for FD management [McK01b]
and a 25% improvement for dcache manage-
ment [Blanchard02a, Linder02a]

2.5 Read-Copy Update and Module Race Re-
duction

Linux 2.4 is subject to races between module
unloading and use of that module. These races

2However, we will be measuring this patch on vari-
ous workloads as Linux’s scaling continues to improve.



Ottawa Linux Symposium 2002 343

Figure 7: IP Route Cache System Performance
Using rcu

can result in the racing code that is attempt-
ing to use the module holding a reference to
newly freed memory, most likely resulting in
an “oops.”

One way to reduce the likelihood of these
races occurring is to wait for a grace pe-
riod after removing the module structure from
themodule_list beforekfree() ing it in
free_module() [Kleen02a]. Races can
still occur, but the race’s window has been de-
creased substantially. The change is a one-
liner (not counting comments), as shown in
Figure 8.

As noted earlier, this change does not address
all the module-unloading problems. However,
we hope that it can be a basis for a full solution.
This approach is now being used in production
in SuSE Linux.

2.6 Read-Copy Update and Preemption

Preemption has recently been added to Linux
in 2.5.4. The addition of preemption means
that read side kernel code is subject to involun-
tary context switches. If not taken into account,

1 @@ -1065,6 +1066,12 @@
2 p->next = mod->next;
3 }
4 spin_unlock_irqrestore(&modlist_lock,
5 flags);
6
7 + /* Wait for all other cpus to go
8 + * through a context switch. This
9 + * doesn’t plug all module unload

10 + * races, but at least some of
11 + * them and makes the window much
12 + * smaller.
13 + */
14 + synchronize_kernel();
15
16 /* And free the memory. */

Figure 8: Module Unloading

this leads to premature flagging of the ends of
grace periods. There are two ways to handle
preemption: (1) explicitly disabling preemp-
tion over read side code segments, and (2) con-
sidering onlyvoluntarycontext switches to be
quiescent states.

Explicitly disabling preemption over read side
code segments adds unwanted overhead to
reading processes, and removes some of the
latency benefits provided by preemption. In
contrast, considering only voluntary context
switches to be quiescent states allows the ker-
nel to reap the full benefit of reduced latency.
This scheme for tracking only voluntary con-
text switches is inspired by the K42 implemen-
tation [Gamsa99].3 The main drawback is in-
creased length of grace periods. This paper fo-
cuses on the voluntary context switches option
and its effects.

3K42’s extensive use of blocking locks and short-
lived threads results in use of thread termination rather
than voluntary context switch as the K42 quiescent state.
In addition, Linux migrates preempted tasks to other
CPUs, which requires special tracking of tasks that have
been preempted since their last voluntary context switch.
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3 Read-Copy Update Implementa-
tions

As noted earlier, the key to read-copy update
is a CPU-efficient mechanism for determining
the required duration of the grace period. This
mechanism is permitted to overestimate the
grace-period duration, but the greater the over-
estimation, the greater the amount of memory
that will be consumed by waiting callbacks.
There are a number of simple and efficient al-
gorithms to determine grace-period duration,
and this paper reviews a number of them.

There are a number of design parameters for a
read-copy update implementation:

1. Batching. Many implementations batch
requests, so that a single grace-period
identification can satisfy multiple re-
quests. Batching is particularly important
for implementations with heavyweight
grace period identification mechanisms.
Although there have been implementa-
tions without batching [McK01a], all im-
plementations described in this paper do
batching.

2. Deducing the length of the grace period.
The simplest mechanisms force a grace
period by a reschedule on all CPUs in
non-preemptive kernels. However, this
approach is relatively expensive, particu-
larly if extended to cope with preemptible
kernels. More efficient implementations
use something like per-CPU quiescent-
state counters to deduce when the natural
course of events has resulted in the expi-
ration of a grace period.

3. Polling mechanism. Implementations that
deduce when a grace period has ended
must use some mechanism to be informed
of this event:

(a) Adding explicit checks to code cor-
responding to quiescent states, for
example, rcu-sched’s hooks in the
Linux scheduler shown in Figure 29.
Explicit checks allow fast response
to quiescent states, but add overhead
when there are no read-copy call-
backs in flight.

(b) Adding counters to code corre-
sponding to quiescent states, and us-
ing kernel daemons to check the
counters, as shown in Figure 13.
This approach adds some complex-
ity, but greatly reduces the overhead
when there are no read-copy call-
backs in flight.

(c) As above, but use tasklets instead
of kernel daemons to do the check-
ing. This further reduces the over-
head, but uses more exotic features
of Linux.

(d) As above, but use a per-CPU
timer handler [Sarma02a] instead of
tasklets to do the checking. It is not
yet clear which of tasklets and timer
handlers are preferable.

If the implementation forces the end of the
grace period, it must similarly use a mech-
anism for doing so:

(a) Scheduling a thread on each CPU in
turn. This has the advantage of im-
mediacy, but cannot be used from
BH or IRQ, and gains no perfor-
mance benefit from batching.

(b) Reserving a kernel daemon that,
upon request, schedules itself on
each CPU in turn. This permits
batching and use from BH and IRQ,
but is more complex.

4. Request queuing. Requests may be
queued globally or on a per-CPU basis.
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Grace periods must of course always be
detected globally, but per-CPU queuing
can reduce the CPU overhead incurred by
call_rcu() . This is a classic perfor-
mance/complexity tradeoff. The correct
choice depends on the workload.

5. Quiescent state definition. For non-
preemptive kernels, context switch is a
popular choice. For preemptive Linux
kernels (such as Linux 2.5), voluntary
context switch may instead be used.

6. Environments. Ifcall_rcu() use is
prohibited in the BH or IRQ contexts, then
more kernel functionality is available to
the implementor ofcall_rcu() , and
less overhead is incurred.
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Section 5 describes a number of Linux imple-
mentations of read-copy update, summarized
in Table 1.

All the implementations in Table 1 exceptrcu-
preemptassume a run-to-block kernel. Sec-
tion 5.7 describesrcu-preempt, which operates
efficiently in a preemptive kernel.

The “QS” column lists the quiescent states that
each algorithm tracks, “I” for idle-loop execu-
tion, “C” for context switch, and “U” for user-
mode execution.

The “BH/IRQ Safe” column indicates whether
code running in BH/IRQ context may safely
delete elements of a read-copy-update-
protected data structure that is accessed by
base-level code with interrupts enabled. The
rcu-poll implementation is BH safe, but is IRQ
unsafe by choice, in order to eliminate the
overhead of interrupt disabling and enabling
that would otherwise be incurred on each call
to call_rcu() . If a strong need arises
for use ofcall_rcu() from IRQ context,
trivial changes torcu-poll will render it IRQ
safe.

The read-copy-update implementations dis-
cussed in this paper choose different points in
this design space. These implementations are
freely available [LSE]. TheX-rcu, rcu, and
rcu-ltimer implementations are similar to the
ptxTM implementation, using per-CPU timers,
kernel daemons, and architecture-dependent
timer support, respectively. Thercu-taskqim-
plementation is an extremely compact imple-
mentation in which a kernel task forces per-
CPU kernel daemons to run on their respec-
tive CPUs. Thercu-sched implementation
uses ring counters within the Linux sched-
uler, and boasts an extremely low overhead
call_rcu() implementation. It is also the
only known read-copy-update implementation
that uses absolutelyno locks, interrupt mask-
ing, memory barriers, or atomic instructions.

The rcu-poll implementation is designed for
minimal overhead when there are no outstand-
ing read-copy callbacks, and boasts very low
call_rcu() latencies. Finally, thercu-
preemptimplementation adapts thercu imple-
mentation to work correctly in preemptible ker-
nels. We will adapt some of the other imple-
mentations for preemptible use, as well. These
implementations are described in more detail
in Section 5 and Appendix A.

4 Performance and Complexity
Comparisons

Table 2 shows the amount of overhead incurred
by each implementation when there is no read-
copy update activity in the system. Thercu-
taskq implementation does best by this mea-
sure, with absolutely no overhead. Thercu-
poll and rcu-preemptare next, with but a sin-
gle local non-atomic increment in the sched-
uler. Thercu-preemptalso incurs overhead on
each preemption, asrcu-poll likely will once
it is adapted to run in a preemptive kernel.
The other implementations incur timer over-
head under idle conditions.

An important figure of merit for a read-copy-
update implementation is the grace period la-
tency. The greater the latency, the more mem-
ory is waiting on the internal lists for the
current grace period to end. On the other
hand, longer latency results in higher effi-
ciency, since the per-callback-batch process-
ing is done less frequently, spreading the over-
head over morecall_rcu() requests. The
best tradeoff depends on the workload: sys-
tems with very infrequentcall_rcu() invo-
cations would prefer small latency in order to
conserve memory, while systems with very fre-
quentcall_rcu() invocations would prefer
larger latencies in order to amortize the over-
head of detecting a grace period over more
call_rcu() invocations.
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Name Batch? Deduce Poll Queuing QS BH/IRQ Safe

X-rcu Yes counters timers per-CPU IC Yes
rcu Yes counters daemons per-CPU C Yes
rcu-poll Yes counters tasklet global C BH Only
rcu-ltimer Yes counters tasklets per-CPU IUC Yes
rcu-taskq Yes No daemons global C Yes
rcu-sched Yes counter ring N/A per-CPU-rrupt IC Yes
rcu-preempt Yes counters timers per-CPU IC Yes

Table 1: Read-Copy Implementations

RCU Idle Memory Refs
Name Switch Preempt Timer Timer Type

X-rcu 1 local 8 local + 1 global + 1 timer 50ms per CPU
rcu 1 local 2 local + 1 global read + 1

global write + 1 timer + #CPU
* up()

50ms global

rcu-poll 1 local
rcu-ltimer 1 local 7 local + 1 global + 1 tasklet per CPU
rcu-taskq
rcu-sched 1 global read
rcu-preempt 1 local 6 local

Table 2: Read-Copy Idle Overhead

Figure 9: call_rcu() Latency Under dbench
Load

This latency depends on worst-case kernel
codepath length, the workload, and the de-
tails of the read-copy-update implementation.
Figure 9 shows thecall_rcu() latency for
the different read-copy update algorithms as a
function of offered load to the dbench bench-
mark. It was run on an 8-CPU 700MHz Xeon
system with 1MB L2 caches and 6GB of mem-
ory using the dcache-rcu patch [LSE]. The
winner by far isrcu-poll, which keeps laten-
cies below 10 milliseconds (and below 250mi-
crosecondson an idle system) by allowing qui-
escent states to be detected in parallel and by its
aggressive forcing of scheduling when a grace
period is required (see Figure 10, which shows
the same data on a semilog plot). Therefore,
rcu-poll is preferable on systems that invoke
call_rcu() infrequently. TheX-rcu, rcu-
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Figure 10: call_rcu() Latency Under dbench
Load (logscale)

ltimer, andrcu implementations have larger la-
tencies that are well bounded as the number
of clients increase. These algorithms are thus
preferable on systems that have very high rates
of call_rcu() invocation.

The rcu-schedalgorithm exhibited very large
latencies (14.5 seconds at 8 clients and 57.7
seconds at 4 clients), which we are investigat-
ing. The rcu-taskqalgorithm’s latencies in-
creases with increasing numbers of clients, be-
cause this algorithm requires the CPUs to pass
through quiescent states sequentially, and be-
cause keventd (which runs the taskq’s) runs at
low priority.

Read-copy update can pose a tradeoff between
latency and overhead, since increased latency
increases the number of callbacks that are ser-
viced by a single grace period. To evaluate
this tradeoff, Figure 11 compares the perfor-
mance of the chat benchmark with 20 rooms
and 500 messages on a 4-CPU 700MHz Pen-
tium III Xeon system with 1MB L2 caches and
1GB memory. This benchmark was run us-
ing the read-copy-update-based IP-route-cache
and FD management patches [LSE]. These re-

Figure 11: RCU Performance on Chat Bench-
mark

sults show little sensitivity to the read-copy-
update algorithm. We are collecting more data
on other workloads.

Table 3 shows the number of lines in each al-
gorithm’s patch. The “All Archs” column gives
the size of the patch applied to all architec-
tures currently in the kernel, while the “One
Arch” column gives the size of each patch ap-
plied to only one architecture. Architecture-
independent patches will have the same num-
ber in both columns. Thercu-taskqimplemen-
tation is the simplest, and so might be a good
place to start looking at read-copy-update im-
plementations.

The rcu-ltimer patch works only on the i386
architecture, so the figure for “All Archs”
is an estimate based on the i386-specific
portion of the patch, which simply invokes
RCU_PROCESS_CALLBACKS()from the
smp_local_timer_interrupt() func-
tion. The rcu-schedpatch contains code to
guard against architectures that shut down their
CPUs when idle.
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Size of
Unified Diffs

Name All One
Archs Arch

rcu-taskq-2.5.3-1.patch 237 237
rcu-poll-2.5.3-1.patch 378 378
X-rcu-2.5.3-4.patch 424 424
rcu-sched-2.5.3-1.patch 575 333
rcu-2.5.3-2.patch 603 603
rcu-preempt-2.5.8-3.patch 682 682
rcu-ltimer-2.5.3-1.patch 742 514

Table 3: Read-Copy Implementation Com-
plexity

5 Read-Copy Update Implementa-
tion Overviews

The following sections summarize the
call_rcu() implementation, the quiescent-
state instrumentation (usually in the sched-
uler), and the high-level timer processing.
More details on the more-complex implemen-
tations may be found in Appendix A, and
patches for each may be found on the Linux
Scalability Effort website [LSE].

5.1 X-rcu

X-rcu is loosely based on the ptx read-copy-
update implementation. It uses a per-CPU con-
text switch counter to instrument this quiescent
state, uses per-CPU queues to track callbacks,
and per-CPU timers to track quiescent states
as needed to find the end of grace periods.
The timers further check for running from idle,
which is a second quiescent state. Dipankar
Sarma implemented this variant to evaluate the
use of timers rather than the kernel daemons
or architecture-dependent timer hooks used by
thercu andrcu-ltimer implementations.

This implementation depends on patches that
have not yet appeared in 2.4, 2.5, or both. The

required patches include:

1. Rusty Russell’s per-CPU data area
patch [Russell02a] permits more natural
maintenance of per-CPU data. It per-
mits the context switch counter to be
maintained separately from the rest of
the per-CPU state, which avoids some
nasty header file cyclic dependencies
between interrupt.h, fs.h, and sched.h.
This separation means thatrcupdate.h
need not include interrupt.h, which
makes it easier to includercupdate.hin
lower-level kernel subsystems, such as
dcache. This patch recently was accepted
into the Linux 2.5 kernel.

2. Per-CPU timer support [Sarma02a]. This
patch enhances Ingo Molnar’s smptimers
patch to guarantee that timers queued in
a CPU always get executed on the same
CPU where they were enqueued. This
guarantee allows per-CPU quiescent state
checking to be performed in a clean and
architecture independent way. In addition,
timers have significantly lower overhead
than kernel daemons.

The call_rcu() function constructs the
callback and enqueues it onto the current
CPU’s rcu_nextlist , as shown in Fig-
ure 12.

Figure 13 shows how the scheduler is instru-
mented. The added line 5 compiles to a local
increment, with no locking, atomic operations,
or cacheline bouncing.

Figure 14 shows the processing done by the
per-CPU timer handler, currently set up to
execute every 5 jiffies on each CPU. This
code detects idle-loop execution and counts
this as a quiescent state. It then invokes
rcu_process_callbacks() to advance
callbacks as ends of grace periods are detected.
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1 void call_rcu(struct rcu_head
2 *head,
3 void (*func)(void *arg),
4 void *arg)
5 {
6 unsigned long flags;
7
8 head->func = func;
9 head->arg = arg;

10 local_irq_save(flags);
11 list_add_tail(&head->list,
12 &this_cpu(rcu_nextlist));
13 local_irq_restore(flags);
14 }

Figure 12:X-rcucall_rcu() Implementation

1 @@ -685,6 +686,7 @@
2 switch_tasks:
3 prefetch(next);
4 prev->work.need_resched = 0;
5 + per_cpu(rcu_qsctr, prev->cpu)++;
6
7 if (likely(prev != next)) {
8 rq->nr_switches++;

Figure 13:X-rcuScheduler Instrumentation

1 static void rcu_percpu_tick(void)
2 {
3 /* Check for idle loop */
4 if (task_idle(current))
5 this_cpu(rcu_qsctr)++;
6 rcu_process_callbacks();
7 }

Figure 14:X-rcuTimer Processing

This callback advancement is described in Ap-
pendix A.1.

5.2 rcu

The rcu patch is also based on the ptx al-
gorithm. Unlike theX-rcu patch described
in Section 5.1,rcu has minimal dependencies
on other patches. It is otherwise quite sim-
ilar, using per-CPU queues of callbacks and
context-switch counters instrumenting the qui-
escent states. However, it uses per-CPU kernel
daemons to periodically check for the end of
grace periods, which means that it cannot eas-
ily check for the CPU having been idle. These
daemons are awakened by a timer that is sched-
uled only when there is at least one callback
in the system. Dipankar Sarma implemented
this variant to evaluate use of kernel dae-
mons rather than architecture-dependent timer
hooks.

Thecall_rcu() function simply constructs
the callback, enqueues it onto the current
CPU’s RCU_nxtlist , then schedules the
current CPU’s tasklet, as shown in Figure 15.

The scheduler is instrumented as shown in Fig-
ure 16. As withX-rcu, this is a local incre-
ment without locking, atomic instructions, or
cacheline bouncing, but, due to the lack of a
per-CPU data area, array-indexing instructions
are required.

The code that performs periodic RCU process-
ing is shown in Figure 17. UP kernels invoke it
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1 void call_rcu(struct rcu_head *head,
2 void (*func)(void *arg),
3 void *arg)
4 {
5 int cpu = cpu_number_map(
6 smp_processor_id());
7 unsigned long flags;
8
9 head->func = func;

10 head->arg = arg;
11 local_irq_save(flags);
12 list_add_tail(&head->list,
13 &RCU_nxtlist(cpu));
14 local_irq_restore(flags);
15 tasklet_schedule(&RCU_tasklet(cpu));
16 }

Figure 15:rcu call_rcu() Implementation

1 @@ -685,6 +686,7 @@
2 switch_tasks:
3 prefetch(next);
4 prev->work.need_resched = 0;
5 + RCU_qsctr(prev->cpu)++;
6
7 if (likely(prev != next)) {
8 rq->nr_switches++;

Figure 16:rcu Scheduler Instrumentation

1 static void
2 rcu_percpu_tick_common(void)
3 {
4 rcu_process_callbacks(0);
5 }

Figure 17:rcu Timer Processing

directly from the timeout handler, while SMP
kernels invoke it fromkrcuddaemons that are
awakened by the timeout handler.

Details of rcu’s callback processing are dis-
cussed in Appendix A.2.

5.3 rcu-poll

The rcu-poll algorithm was written by An-
drea Arcangeli and Dipankar Sarma. It ap-
pears in the “-aa” series of kernels and in re-
cent SuSE releases. Unlike theX-rcu andrcu
algorithms,rcu-poll uses a single set of lists to
process read-copy-update callbacks, which are
processed by a single tasklet. This results in
more cacheline bouncing than do the other al-
gorithms, but is considerably shorter and sim-
pler, and, as noted earlier, boasts extremely
short average grace-period latencies and low
incremental overheads when there are no read-
copy update callbacks in flight.

The call_rcu() function constructs
the callback, enqueues it onto a global
rcu_nxtlist , then schedules the tasklet, as
shown in Figure 18.

The scheduler is instrumented in much the
same way as for the previous algorithms, as
shown in Figure 19.

Periodic RCU processing is handled by
a single tasklet, whose body is shown
in Figure 20. This tasklet invokes
rcu_prepare_polling() to snap-
shot each CPU’s quiescent state counters if
polling is not yet in progress and if there are
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1 void call_rcu(struct rcu_head *head,
2 void (*func)(void *arg),
3 void *arg)
4 {
5 head->func = func;
6 head->arg = arg;
7
8 spin_lock_bh(&rcu_lock);
9 list_add(&head->list, &rcu_nxtlist);

10 spin_unlock_bh(&rcu_lock);
11
12 tasklet_hi_schedule(&rcu_tasklet);
13 }

Figure 18:rcu-poll call_rcu() Implementation

1 @@ -685,6 +686,7 @@
2 switch_tasks:
3 prefetch(next);
4 prev->work.need_resched = 0;
5 + RCU_quiescent(prev->cpu)++;
6
7 if (likely(prev != next)) {
8 rq->nr_switches++;

Figure 19:rcu-poll Scheduler Instrumentation

pending callbacks. If polling has already been
started, it instead invokesrcu_polling()
to check to see if the grace period has ended.
This ensures all CPUs have passed through
their quiescent states via the context switch.

Details of rcu-poll’s callback processing are
discussed in Appendix A.3.

1 static void rcu_process_callbacks(
2 unsigned long data)
3 {
4 int stop;
5
6 spin_lock(&rcu_lock);
7 if (!rcu_polling_in_progress)
8 stop = rcu_prepare_polling();
8 else
9 stop = rcu_polling();

10 spin_unlock(&rcu_lock);
11
12 if (!stop)
13 tasklet_hi_schedule(&rcu_tasklet);
14 }

Figure 20:rcu-poll Tasklet Body

1 void call_rcu(struct rcu_head *head,
2 void (*func)(void *arg),
3 void *arg)
4 {
5 int cpu = cpu_number_map(
6 smp_processor_id());
7
8 head->func = func;
9 head->arg = arg;

10 local_bh_disable();
11 list_add_tail(&head->list,
12 &RCU_nxtlist(cpu));
13 local_bh_enable();
14 }

Figure 21: rcu-ltimer call_rcu() Implementa-
tion

5.4 rcu-ltimer

The rcu-ltimer implementation is simi-
lar to X-rcu and rcu, but it inserts calls
to RCU_PROCESS_CALLBACKS() into
do_timer() and into the architecture-
specific smp_local_timer_interrupt()

functions, instead of using timers or a kernel
daemon to check for the ends of grace periods.
This allows rcu-ltimer to count user-mode
execution as a quiescent state, in addition to
the idle loop and context switch. The current
patch is fully implemented only on the i386
architecture. Dipankar Sarma implemented
this variant to obtain the closest analog to the
ptx implementation.

The call_rcu() function constructs the
callback and enqueues it onto a per-CPU
RCU_nxtlist , as shown in Figure 21.

The scheduler is instrumented in much the
same way as for the previous algorithms, as
shown in Figure 22.

Periodic RCU processing is handled by per-
CPU tasklets, which are invoked as shown
in Figure 23. Lines 3–4 note a quiescent
state if the CPU was interrupted from user
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1 @@ -685,6 +686,7 @@
2 switch_tasks:
3 prefetch(next);
4 prev->work.need_resched = 0;
5 + RCU_qsctr(prev->cpu)++;
6
7 if (likely(prev != next)) {
8 rq->nr_switches++;

Figure 22: rcu-ltimer Scheduler Instrumenta-
tion

1 #define RCU_PROCESS_CALLBACKS(cpu,regs) \
2 do { \
3 if (user_mode(regs) || idle_cpu(cpu)) \
4 RCU_qsctr(cpu)++; \
5 if ((RCU_tasklet(cpu).state & \
6 ((1 << TASKLET_STATE_SCHED) | \
7 (1 << TASKLET_STATE_RUN))) \
8 == 0) \
9 tasklet_schedule(

10 &RCU_tasklet(cpu)); \
11 } while(0)

Figure 23:rcu-ltimerTimer Processing

mode or the idle loop. Lines 5–10 sched-
ule this CPU’s tasklet if it is not already ei-
ther scheduled or running. This tasklet invokes
rcu_process_callbacks() , which is de-
scribed in more detail in Appendix A.4.

5.5 rcu-taskq

Dipankar Sarma implemented thercu-taskqal-
gorithm to obtain a minimal efficient imple-
mentation. And this implementation does in
fact have the smallest patch, using a single task
and a global set of callback queues. The task
forces each of a set of per-CPU kernel dae-
mons to schedule itself; when each done so, the
grace period has expired. This implementation
thus directly forces quiescent states, unlike the
other implementations, which instead measure
naturally occurring quiescent states. Its grace-
period latency increases with increasing load
on the system, as noted earlier, but is the only
implementation with absolutely zero load on
the system when there are no read-copy call-

1 void call_rcu(struct rcu_head * head,
2 void (*func)(void * arg),
3 void * arg)
4 {
5 unsigned long flags;
6 int start = 0;
7
8 head->func = func;
9 head->arg = arg;

10
11 spin_lock_irqsave(&rcu_lock, flags);
12 if (list_empty(&rcu_wait_list))
13 start = 1;
14 list_add(&head->list, &rcu_wait_list);
15 spin_unlock_irqrestore(&rcu_lock, flags);
16
17 if (start)
18 schedule_task(&rcu_task);
19 }

Figure 24: rcu-taskqcall_rcu() Implementa-
tion

backs in flight.

Figure 24 shows thecall_rcu() implemen-
tation. Lines 8–9 initialize the callback, lines
11 and 15 handle locking, lines 12–13 record
the initial list state, and line 14 adds the call-
back to thercu_wait_list . Lines 17–18
start the task if lines 12–13 found the list ini-
tially empty.

The task started bycall_rcu() invokes
the functionprocess_pending_rcus() ,
shown in Figure 25. Lines 8–10 snapshot
rcu_wait_list into a local list. Line 13
then invokeswait_for_rcu() to wait for a
full grace period to elapse. Finally, lines 15–23
invoke the callbacks from the local list.

Figure 26 showswait_for_rcu() . Lines
6–10 awaken thekrcud daemons for the other
CPUs, and lines 11–13 wait for these daemons
to respond.

Figure 27 shows the code for thekrcud dae-
mons. Lines 6–20 initialize the daemon, set
its priority high, blocking signals, binding
to the corresponding CPU, setting the task
name, initializing the task name, and inform-
ing the spawn_krcud() task that the dae-
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1 static void process_pending_rcus(
2 void *arg)
3 {
4 LIST_HEAD(rcu_current_list);
5 struct list_head * entry;
6
7 spin_lock_irq(&rcu_lock);
8 list_splice(&rcu_wait_list,
9 rcu_current_list.prev);

10 INIT_LIST_HEAD(&rcu_wait_list);
11 spin_unlock_irq(&rcu_lock);
12
13 wait_for_rcu();
14
15 while ((entry = rcu_current_list.prev)
16 != &rcu_current_list) {
17 struct rcu_head * head;
18
19 list_del(entry);
20 head = list_entry(entry,
21 struct rcu_head, list);
22 head->func(head->arg);
23 }
24 }

Figure 25: rcu-taskqprocess_pending_rcus()
Implementation

1 static void wait_for_rcu(void)
2 {
3 int cpu;
4 int count;
5
6 for (cpu = 0; cpu < smp_num_cpus; cpu++) {
7 if (cpu == smp_processor_id())
8 continue;
9 up(&krcud_sema(cpu));

10 }
11 count = 0;
12 while (count++ < smp_num_cpus - 1)
13 down(&rcu_sema);
14 }

Figure 26: rcu-taskq wait_for_rcu() Imple-
mentation

1 static int krcud(void * __bind_cpu)
2 {
3 int bind_cpu = *(int *) __bind_cpu;
4 int cpu = cpu_logical_map(bind_cpu);
5
6 daemonize();
7 current->policy = SCHED_FIFO;
8 current->rt_priority = 1001 +
9 sys_sched_get_priority_max(SCHED_FIFO);

10
11 sigfillset(&current->blocked);
12
13 /* Migrate to the right CPU */
14 set_cpus_allowed(current, 1UL << cpu);
15
16 sprintf(current->comm,
17 "krcud_CPU%d", bind_cpu);
18 sema_init(&krcud_sema(cpu), 0);
19
20 krcud_task(cpu) = current;
21
22 for (;;) {
23 while (down_interruptible(
24 &krcud_sema(cpu)));
25 up(&rcu_sema);
26 }
27 }

Figure 27:rcu-taskqkrcud() Implementation

mon is ready to process requests. Lines 22–
26 process each request, alternately sleep-
ing on thekrcud_sema and waking up the
process_pending_rcus() task.

5.6 rcu-sched

The rcu-schedimplementation was developed
by Rusty Russell [Russell01d], with a goal of
minimizing call_rcu() overhead. It uses
a ring of per-CPU counters, and each CPU
sets its counter to one greater than that of its
neighbor on each pass through the scheduler
when read-copy-update callbacks are pending.
Thus, when a given CPU sees its neighbor’s
counter change, it is guaranteed that each CPU
has passed through the scheduler (a quiescent
state) since the given CPU last incremented its
own counter.

This implementation also maintains not just
per-CPU callback queues, but two sets of per-
CPU-per-IRQ callback queues. This allows the
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queues to be accesses without the need for ei-
ther locks (per-CPU) or for interrupt masking
(per-IRQ). One set of these queues accumu-
lates new callbacks fromcall_rcu() , while
the other set holds callbacks waiting for the end
of the current grace period.

Finally, this implementation places checks in
the idle loop in order to ensure that idle CPUs
do not indefinitely delay the end of the grace
period. This has the beneficial side effect of
causing idle-loop execution to be a quiescent
state without using the active entities (tasklets,
timers, kernel daemons) used by the other im-
plementations.

Figure 28 shows thecall_rcu() func-
tion. Lines 9–10 initialize thercu_head
callback. Lines 11–14 determine the inter-
rupt state, which is used later as an index to
the array of lists of callbacks. Lines 17–18
find the right queue for the callback. The
rcu_batch[cpu].queueing is a bit that
contains the index of the half of the array that is
accumulating new callbacks. The sense of this
bit is reversed inrcu_batch_done() at the
end of each grace period. Line 20 increments
the number of pending callbacks, which sig-
nals the scheduler to start looking for a grace
period, and lines 23–24 enqueues the callback.

Figure 29 shows the first patch to the sched-
uler. Lines 12–13 check to see if there are
read-copy-update callbacks pending, and, if so,
branch to thercu_process label in the sec-
ond patch shown in Figure 30

Lines 8–10 of Figure 30 set local variablec
to one greater than the previous CPU’s ring
counter. Ifc is different than this CPU’s ring
count, a grace period has ended, and is handled
by lines 16–23. Line 11 checks for scheduler
reentry, and if this has not occurred, lines 19–
23 invokercu_batch_done() , protecting
against scheduler re-entry by manipulating this
CPU’s finished_count . Line 25 updates

1 void call_rcu(struct rcu_head *head,
2 void (*func)(void *data),
3 void *data)
4 {
5 unsigned cpu = smp_processor_id();
6 unsigned state;
7 struct rcu_head **headp;
8
9 head->func = func;

10 head->data = data;
11 if (in_interrupt()) {
12 if (in_irq()) state = 2;
13 else state = 1;
14 } else state = 0;
15
16 /* Figure out which queue we’re on. */
17 headp = &rcu_batch[cpu].head[
18 rcu_batch[cpu].queueing][state];
19
20 atomic_inc(&rcu_pending);
21 /* Prepend to this CPU’s list:
22 no locks needed. */
23 head->next = *headp;
24 *headp = head;
25 }

Figure 28: rcu-schedcall_rcu() Implementa-
tion

1 @@ -634,10 +639,16 @@
2 prio_array_t *array;
3 list_t *queue;
4 int idx;
5 + int c, this_cpu;
6
7 if (unlikely(in_interrupt()))
8 BUG();
9 release_kernel_lock(prev,

10 smp_processor_id());
11 +
12 + if (unlikely(is_rcu_pending()))
13 + goto rcu_process;
14 +
15 +rcu_process_back:
16 spin_lock_irq(&rq->lock);
17
18 switch (prev->state) {

Figure 29: rcu-schedScheduler Instrumenta-
tion, Part 1
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1 @@ -700,6 +711,23 @@
2 }
3 spin_unlock_irq(&rq->lock);
4
5 +rcu_process:
6 + /* Avoid cache line effects
7 + if value hasn’t changed */
8 + this_cpu = smp_processor_id();
9 + c = ring_count((this_cpu + 1) %

10 + smp_num_cpus) + 1;
11 + if (c != ring_count(this_cpu)) {
12 + /* Do subtraction to
13 + avoid int wrap corner case */
14 + if (c - finished_count(this_cpu)
15 + >= 0) {
16 + /* Avoid reentry: temporarily
17 + set finish_count
18 + far in the future */
19 + finished_count(this_cpu) =
20 + c + INT_MAX;
21 + rcu_batch_done();
22 + finished_count(this_cpu) =
23 + c + smp_num_cpus;
24 + }
25 + ring_count(this_cpu) = c;
26 + }
27 + goto rcu_process_back;
28 +
29 reacquire_kernel_lock(current);
30 return;
31 }

Figure 30: rcu-schedScheduler Instrumenta-
tion, Part 2

this CPU’s ring count, which will result in the
next CPU seeing the end of a grace period.
Line 27 returns control to the mainline sched-
uler.

Figure 31 shows how the idle loop is instru-
mented to prevent architectures that shut down
CPUs on idle from indefinitely extending the
grace period. The other implementations get
this effect through use of timers or forced con-
text switches.

Figure 32 shows rcu_batch_done() ,
which is invoked from the scheduler at the end
of a grace period. Line 7–8 pick up a pointer
to this CPU’s set of read-copy-update callback
queues. Lines 11–22 invoke all the callbacks
in each of this CPU’s callback queues (one
for each possible IRQ level) that was waiting
for the current grace period to expire (selected

1 @@ -84,7 +85,8 @@
2 get into the scheduler unnecessarily. */
3 long oldval = xchg(
4 &current->work.need_resched, -1UL);
5 if (!oldval)
6 - while (current->work.need_resched < 0);
7 + while (current->work.need_resched < 0
8 + && !is_rcu_pending());
9 schedule();

10 check_pgt_cache();
11 }

Figure 31: rcu-schedIdle Loop Instrumenta-
tion

1 void rcu_batch_done(void)
2 {
3 struct rcu_head *i, *next;
4 struct rcu_batch *mybatch;
5 unsigned int q;
6
7 mybatch =
8 &rcu_batch[smp_processor_id()];
9 /* Call callbacks: probably delete

10 themselves, may schedule. */
11 for (q = 0; q < 3; q++) {
12 for (i = mybatch->head[
13 !mybatch->queueing][q];
14 i;
15 i = next) {
16 next = i->next;
17 i->func(i->data);
18 atomic_dec(&rcu_pending);
19 }
20 mybatch->head[
21 !mybatch->queueing][q] = NULL;
22 }
23
24 /* Start queueing on this batch. */
25 mybatch->queueing = !mybatch->queueing;
26 }

Figure 32:rcu-schedrcu_batch_done()

by !mybatch->queueing ), and empty
each list. Line 25 swaps the sets of queues,
so that the callbacks previously waiting for a
new grace period to begin are now waiting for
the now-current grace period, and the newly
emptied queues will now accept new callbacks
registered by future calls tocall_rcu() .

5.7 Preemptible Algorithm

With the addition of preemption to the Linux
kernel, read-copy update must also handle pre-
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emption. Rusty Russell [Russell01b] produced
such a patch, but it requires scanning all tasks
on the runqueue, a job made more complex by
the addition of the multi-queue scheduler.

Dipankar Sarma created a prototype pre-
emptible algorithm that is similar torcu,4

but adds per-CPU counts of preempted tasks,
which operate in a manner in some ways
similar to the generation mechanism in
K42 [Gamsa99]. The key concept is that a
preemptible kernel must track tasks rather than
CPUs. However, to avoid potentially expen-
sive scans of the task list or the runqueues, the
tasks are tracked on a per-CPU basis. When
a task returns from a voluntary context switch
(or is created), it is implicitly associated with
the CPU that it starts running on. No matter
how many times the task is preempted, from a
read-copy-update perspective, it remains affil-
iated with that CPU, even if it is migrated to
other CPUs. Once it performs a voluntary con-
text switch, it gives up its affiliation.

However, no additional work is done (over that
done by a non-preemptible kernel running a
non-preemptible implementation of read-copy
update) until that task is preempted. The task
then increments a per-CPU counter, which re-
mains incremented until the task executes a
voluntary context switch, possibly by exiting.
The task then decrements that same per-CPU
counter, even if the task is running on some
other CPU at the time.

Of course, if there is a lot of preemption, it
might be that a particular CPUalways has
at least one preempted task affiliated with it.
However, the end of a grace period is marked
not by the absence of tasks, but by each of the
tasks that was either running or preempted at
the start of the grace period having either ex-

4However, as noted earlier, this preemptible version
of rcu has greatly reduced CPU overhead when there are
no read-copy callbacks in the system.

ited or voluntarily switched context.

This distinction is maintained by providing
each CPU with a pair of counters, a “next”
counter that is incremented by tasks returning
from their voluntary context switch onto the
corresponding CPU, and a “current” counter
that is only decremented. Note that the “next”
counter will be also decremented whenever a
task resumes execution quickly enough after
being preempted. The end of the grace pe-
riod occurs when all CPUs’ “current” coun-
ters reach zero.5 The roles of the counters in
each pair are now reversed in order to start the
next grace period, just after the basercu por-
tion of the algorithm moves the callbacks in the
rcu_nextlist to rcu_currlist .

Each CPU’s pair of counters is as shown
in Figure 33, along with the pair of point-
ers that handle the reversing of their roles.
The next_preempt_cntr pointer points
to the element ofrcu_preempt_cntr[]
that is atomically incremented (by a new
rcu_preempt_get() function) when task
affiliated with this CPU is preempted for the
first time since its preceding voluntary con-
text switch. The task records this pointer in
a new cpu_preempt_cntr pointer in its
task structure, which is initially NULL. After
the task resumes and voluntarily relinquishes
the CPU6, it atomically decrements the counter
pointed to by itscpu_preempt_cntr , us-
ing a new rcu_preempt_put() func-
tion, then NULLs itscpu_preempt_cntr
pointer.

5Unless one of the CPUs has been running a task
continuously since before the start of the grace period,
but this case is handled by the basercu portion of the
implementation.

6Possibly after having been preempted several more
times along the way. This is why the counter cannot be
decremented immediately when the task is resumed, but
must instead wait for the task to voluntarily relinquish
the CPU.
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1 extern atomic_t
2 rcu_preempt_cntr[2] __per_cpu_data;
3 extern atomic_t
4 *curr_preempt_cntr __per_cpu_data;
5 extern atomic_t
6 *next_preempt_cntr __per_cpu_data;

Figure 33: rcu_preempt Per-CPU Counters

The curr_preempt_cntr pointer points
to the element ofrcu_preempt_cntr[]
that next_preempt_cntr does not point
to. This element of the array contains the
number of tasks affiliated with this CPU that
were first preempted before the beginning of
the current grace period, and that must re-
sume and voluntarily relinquish a CPU be-
fore the current grace period can expire.
When this CPU becomes aware of the end
of the current grace period, it exchanges
the values ofnext_preempt_cntr and
curr_preempt_cntr , so that the elements
of the rcu_preempt_cntr[] array ex-
change roles.

The rest of the callback processing is
very similar to that of the rcu algo-
rithm. The major difference is that
rcu_check_quiescent_state() must
check that all tasks preempted on this CPU
prior to the current grace period have voluntar-
ily relinquished the CPU.

6 Conclusions and Future Plans

Andrea Arcangeli’srcu-poll implementation
exhibits the bestcall_rcu() latency, and is
therefore a good implementation for workloads
that do not have high aggregatecall_rcu()
invocation rates. The longer (but well-
bounded)call_rcu() latencies of theX-
rcu, rcu-ltimer, andrcu implementations may
make them preferable for systems with higher
call_rcu() invocation rates.

We are continuing our work on preemptible

read-copy-update implementations, in order
to obtain the best implementation compatible
with the 2.5 kernel. Finally, we are continu-
ing our measurements with various workloads,
which we expect will evolve as the 2.5 kernel
evolves. In particular, we will measure perfor-
mance under heavycall_rcu() load.
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Figure 34: RCU Callback Flow
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Appendix

A Implementation Details

These appendices contain more implementa-
tion details of the various algorithms.

A.1 X-rcu Callback Processing

This section describes theX-rcu callback pro-
cessing. The processing proceeds as shown in
Figure 34.

The rcu_process_callbacks() func-
tion shown in Figure 35 handles the over-
all flow. Lines 3–12 move callbacks from
rcu_currlist to rcu_donelist after
the end of a grace period. Line 14 in-
vokes rcu_move_next_batch() (shown

1 static void rcu_process_callbacks(void)
2 {
3 if (!list_empty(
4 &this_cpu(rcu_currlist)) &&
5 RCU_BATCH_GT(rcu_currbatch,
6 this_cpu(rcu_batch))) {
7 list_splice(
8 &this_cpu(rcu_currlist),
9 &this_cpu(rcu_donelist));

10 INIT_LIST_HEAD(
11 &this_cpu(rcu_currlist));
12 }
13
14 rcu_move_next_batch();
15
16 rcu_check_quiescent_state();
17
18 if (!list_empty(
19 &this_cpu(rcu_donelist))) {
20 rcu_invoke_callbacks(
21 &this_cpu(rcu_donelist));
22 }
23 }

Figure 35:X-rcu rcu_process_callbacks()

in Figure 36), which moves callbacks from
rcu_nextlist to rcu_currlist , initi-
ating grace-period detection if needed. Line 16
calls rcu_check_quiescent_state() ,
which checks to see if the current CPU has
passed through a quiescent state since the be-
ginning of the current grace period. Lines 18–
22 call rcu_invoke_callbacks() to in-
voke any callbacks inrcu_donelist .

The rcu_move_next_batch() func-
tion shown in Figure 36 disables local
interrupts (line 3), and then checks to
see if rcu_currlist is empty and
rcu_nextlist is not (lines 4–7). If
so, it moves the contents ofrcu_nextlist
to rcu_currlist (lines 8 and 9), then
re-enables interrupts (line 12). It then obtains
a new RCU batch number (lines 18–19) and
registers it usingrcu_reg_batch() (line
20, see Figure 39 for this function’s definition)
under thercu_lock .

If lines 4–5 find rcu_currlist to be
nonempty, rcu_move_next_batch()
simply re-enables interrupts and returns (line
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1 static void rcu_move_next_batch(void)
2 {
3 local_irq_disable();
4 if (!list_empty(
5 &this_cpu(rcu_nextlist)) &&
6 list_empty(
7 &this_cpu(rcu_currlist))) {
8 list_splice(&this_cpu(rcu_nextlist),
9 &this_cpu(rcu_currlist));

10 INIT_LIST_HEAD(
11 &this_cpu(rcu_nextlist));
12 local_irq_enable();
13
14 /*
15 * start the next batch of callbacks
16 */
17 spin_lock(&rcu_lock);
18 this_cpu(rcu_batch) =
19 rcu_currbatch + 1;
20 rcu_reg_batch(this_cpu(rcu_batch));
21 spin_unlock(&rcu_lock);
22 } else {
23 local_irq_enable();
24 }
25 }

Figure 36:X-rcu rcu_move_next_batch()

23).

The rcu_check_quiescent_state()
function shown in Figure 37 checks to see if
the current CPU has gone through a quiescent
state, and, if so, publicizes it.

Lines 6–8 check to see if this CPU has al-
ready passed through a quiescent state during
the current grace period, and, if so, line 6 sim-
ply returns. Lines 17–22 check to see if this
is the first that this CPU has heard of the cur-
rent grace period, and, if so, lines 19–20 take a
snapshot of this CPU’s context-switch counter
in rcu_last_qsctr and returns. Lines 23–
26 check to see if this CPU has passed through
a quiescent state since the snapshot, and, if not,
line 25 simply returns.

Execution reaches line 29 when this CPU
first determines that it has passed through a
quiescent state in the current grace period.
Lines 28–44 publish this fact under the global
rcu_lock , which possibly marks the end of
the current grace period. Line 33 clears this

CPU’s bit in rcu_cpumask , which publi-
cizes the fact that this CPU has passed through
a quiescent state during the current grace pe-
riod. Lines 34–35 setrcu_last_qsctr to
an invalid quantity, which will indicate that this
CPU is not yet aware of the next grace pe-
riod. If there are other CPUs that have not
yet passed through their quiescent states, then
lines 36–41 release thercu_lock and return.
Execution reaches line 42 if this CPU is the
last one to detect that it has passed through a
quiescent state during the current grace period,
which marks the end of the grace period. Line
42 incrementsrcu_currbatch , which sig-
nals the end of the grace period. Line 43 in-
vokesrcu_reg_batch() to initiate a new
grace period if needed, and line 36 releases the
rcu_lock .

Figure 38 shows
rcu_invoke_callbacks() , which sim-
ply loops through the list of callbacks,
invoking each in turn.

Figure 39 showsrcu_reg_batch() , which
publicizes the beginning of a new grace pe-
riod, if needed. Lines 4–7 check to see if
the batch number of the requested grace pe-
riod is larger than that of the largest-numbered
grace period that has been requested thus
far (the RCU_BATCH_LT() macro handles
wraparound). If so, line 6 publicizes the
new maximum batch number. If the largest-
numbered grace period requested thus far has
already completed or if a grace period is cur-
rently in progress, lines 8–12 simply return.
Otherwise, line 13 setsrcu_cpumask to in-
dicate that all CPUs need to pass through a qui-
escent state, which publicizes the start of a new
grace period.

A.2 rcu Callback Processing

Thercu algorithm’s callback processing is very
similar to that of theX-rcualgorithm, shown in
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1 static void rcu_check_quiescent_state(void)
2 {
3 int cpu = cpu_number_map(
4 smp_processor_id());
5
6 if (!test_bit(cpu, &rcu_cpumask)) {
7 return;
8 }
9

10 /*
11 * May race with rcu per-cpu tick -
12 * in the worst case
13 * we may miss one quiescent state
14 * of that CPU. That is tolerable.
15 * So no need to disable interrupts.
16 */
17 if (this_cpu(rcu_last_qsctr) ==
18 RCU_QSCTR_INVALID) {
19 this_cpu(rcu_last_qsctr) =
20 this_cpu(rcu_qsctr);
21 return;
22 }
23 if (this_cpu(rcu_qsctr) ==
24 this_cpu(rcu_last_qsctr)) {
25 return;
26 }
27
28 spin_lock(&rcu_lock);
29 if (!test_bit(cpu, &rcu_cpumask)) {
30 spin_unlock(&rcu_lock);
31 return;
32 }
33 clear_bit(cpu, &rcu_cpumask);
34 this_cpu(rcu_last_qsctr) =
35 RCU_QSCTR_INVALID;
36 if (rcu_cpumask != 0) {
37 /* All CPUs haven’t gone
38 through a quiescent state */
39 spin_unlock(&rcu_lock);
40 return;
41 }
42 rcu_currbatch++;
43 rcu_reg_batch(rcu_maxbatch);
44 spin_unlock(&rcu_lock);
45 }

Figure 37:X-rcu rcu_check_quiescent_state()

1 static inline void rcu_invoke_callbacks(
2 struct list_head *list)
3 {
4 struct list_head *entry;
5 struct rcu_head *head;
6
7 while (!list_empty(list)) {
8 entry = list->next;
9 list_del(entry);

10 head = list_entry(entry,
11 struct rcu_head, list);
12 head->func(head->arg);
13 }
14 }

Figure 38:X-rcu rcu_invoke_callbacks()

1 static inline void rcu_reg_batch(
2 rcu_batch_t newbatch)
3 {
4 if (RCU_BATCH_LT(rcu_maxbatch,
5 newbatch)) {
6 rcu_maxbatch = newbatch;
7 }
8 if (RCU_BATCH_LT(rcu_maxbatch,
9 rcu_currbatch) ||

10 (rcu_cpumask != 0)) {
11 return;
12 }
13 rcu_cpumask = cpu_online_map;
14 }

Figure 39:X-rcu rcu_reg_batch()

Appendix A.1. Differences include:

1. rcu must explicitly index into arrays con-
taining per-CPU elements, whileX-rcudi-
rectly accesses the per-CPU data area.

2. rcu’s rcu_process_callbacks()

contains code that clears the current
CPU’s bit fromrcu_active_cpumask .

3. rcu’s rcu_move_next_batch() con-
tains code that sets the current CPU’s bit
in rcu_active_cpumask and schedules
the timer if there are RCU callbacks active
and the timer is not already scheduled.

A.3 rcu-poll Callback Processing

Figure 40 shows the
rcu_prepare_polling() func-
tion. This function relies on
rcu_process_callbacks() (see Fig-
ure 20) acquiring thercu_lock . Lines 12–27
check to see if there are callbacks waiting
in rcu_nxtlist , and, if so, starts a grace
period. Lines 13–14 move the list from
rcu_nxtlist to rcu_curlist . Line 16
records the fact that a grace period is now
in progress. Lines 18–25 mark each CPU
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1 static int rcu_prepare_polling(void)
2 {
3 int stop;
4 int i;
5
6 #ifdef DEBUG
7 if (!list_empty(&rcu_curlist))
8 BUG();
9 #endif

10
11 stop = 1;
12 if (!list_empty(&rcu_nxtlist)) {
13 list_splice(&rcu_nxtlist, &rcu_curlist);
14 INIT_LIST_HEAD(&rcu_nxtlist);
15
16 rcu_polling_in_progress = 1;
17
18 for (i = 0; i < smp_num_cpus; i++) {
19 int cpu = cpu_logical_map(i);
20
21 rcu_qsmask |= 1UL << cpu;
22 rcu_quiescent_checkpoint[cpu] =
23 RCU_quiescent(cpu);
24 force_cpu_reschedule(cpu);
25 }
26 stop = 0;
27 }
28
29 return stop;
30 }

Figure 40:rcu-poll rcu_prepare_polling()

(other than the current one) as needing to
go through a quiescent state, take a snapshot
of each CPU’s context-switch counter, and
expedite a context switch. Line 26 indicates
that grace-period polling needs to continue –
if rcu_nxtlist had been empty, polling
would cease until the nextcall_rcu()
invocation.

Figure 41 shows thercu_polling() func-
tion. Lines 6–13 check each CPU that has not
yet been observed passing through a quiescent
state (as indicated by thercu_qsmask
check at line 9) to see if that CPU’s
RCU_quiescent counter has advanced
since the rcu_prepare_polling()
started the current grace period. If it has,
then that CPU has recently passed through
a quiescent state, so line 12 clears its bit
from rcu_qsmask . Line 16 then checks
to see if all CPUs have now passed through

1 static int rcu_polling(void)
2 {
3 int i;
4 int stop;
5
6 for (i = 0; i < smp_num_cpus; i++) {
7 int cpu = cpu_logical_map(i);
8
9 if (rcu_qsmask & (1UL << cpu))

10 if (rcu_quiescent_checkpoint[cpu]
11 != RCU_quiescent(cpu))
12 rcu_qsmask &= ~(1UL << cpu);
13 }
14
15 stop = 0;
16 if (!rcu_qsmask)
17 stop = rcu_completion();
18
19 return stop;
20 }

Figure 41:rcu-poll rcu_polling()

1 static int rcu_completion(void)
2 {
3 int stop;
4
5 rcu_polling_in_progress = 0;
6 rcu_invoke_callbacks();
7
8 stop = rcu_prepare_polling();
9

10 return stop;
11 }

Figure 42:rcu-poll rcu_completion()

their quiescent states. If so, line 17 invokes
rcu_completion() to mark the end of
the grace period. If another grace period
is required, rcu_completion will have
started it, and will then return zero to signal
that grace-period polling should continue.

Figure 42 shows thercu_completion()
function that is invoked at the end of a grace
period. Line 5 records the fact that a grace
period is no longer in progress, line 6 invokes
rcu_invoke_callbacks() to invoke the
callbacks, and line 8 starts a new grace period,
if required.

Figure 43 shows the
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1 static void rcu_invoke_callbacks(void)
2 {
3 struct list_head *entry;
4 struct rcu_head *head;
5
6 #ifdef DEBUG
7 if (list_empty(&rcu_curlist))
8 BUG();
9 #endif

10
11 entry = rcu_curlist.prev;
12 do {
13 head = list_entry(entry,
14 struct rcu_head, list);
15 entry = entry->prev;
16
17 head->func(head->arg);
18 } while (entry != &rcu_curlist);
19
20 INIT_LIST_HEAD(&rcu_curlist);
21 }

Figure 43:rcu-poll rcu_invoke_callbacks()

rcu_invoke_callbacks() function.
This is similar to that shown forX-rcu in Fig-
ure 38, but processes a single global list rather
than a per-CPU list, and removes elements
from the list in a slightly different manner.

A.4 rcu-ltimer Callback Processing

This implementation is closest to that in
ptx, and is thus driven from timer han-
dlers, as noted in Section 5.4. The
rcu_process_callbacks() function,
shown in Figure 44 is invoked on every timer
tick to process the per-CPU callback lists. This
function invokesrcu_check_callbacks()

if any of the following are true:

1. There are callbacks inRCU_curlist and
the corresponding grace period has ex-
pired (lines 7–9).

2. There are no callbacks inRCU_curlist ,
but there are some inRCU_nxtlist wait-
ing to start a grace period (lines 10–11).

3. This CPU has not yet passed through a
quiescent state for the current grace period
(line 12–13).

1 static void rcu_process_callbacks(
2 unsigned long data)
3 {
4 int cpu = cpu_number_map(
5 smp_processor_id());
6
7 if ((!list_empty(&RCU_curlist(cpu)) &&
8 RCU_BATCH_LT(RCU_batch(cpu),
9 rcu_ctrlblk.curbatch)) ||

10 (list_empty(&RCU_curlist(cpu)) &&
11 !list_empty(&RCU_nxtlist(cpu))) ||
12 test_bit(cpu,
13 &rcu_ctrlblk.rcu_cpu_mask))
14 rcu_check_callbacks();
15 }

Figure 44:rcu-ltimer rcu_process_callbacks()

Figure 45 showsrcu_check_callbacks()

advances callbacks for the current CPU
through the lists. Lines 7–13 check to see if the
grace period corresponding to callbacks in this
CPU’s RCU_curlist has expired, and, if so,
moves the contents of this list to the local vari-
able list . Lines 15–29 check to see if this
CPU’sRCU_curlist is empty and if there are
callbacks in this CPU’sRCU_nxtlist waiting
to start a grace period, and, if so, moves them
from RCU_nxtlist to RCU_curlist on lines
17–19 and requests a new grace period in lines
24–28. Line 30 then checks to see if this CPU
has passed through a quiescent state. Lines
31–32 invoke any callbacks on local variable
list .

Figure 46 showsrcu_reg_batch() , which
schedules a new grace period if required. Lines
4–7 check to see if the new batch number is
larger than the largest seen thus far, and, if so,
records the new maximum batch number on
line 6. Lines 8–10 check to see if the grace
period corresponding to the largest batch num-
ber has already expired (lines 8–9), or if a grace
period is already in progress (line 10), and, in
either case, simply returns. Otherwise, lines
13–14 record the fact that all CPUs need to go
through a quiescent state for the new grace pe-
riod. As before, theRCU_BATCH_LT()macros
check for batch-number wraparound.
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1 static void rcu_check_callbacks(void)
2 {
3 int cpu = cpu_number_map(
4 smp_processor_id());
5 LIST_HEAD(list);
6
7 if (!list_empty(&RCU_curlist(cpu)) &&
8 RCU_BATCH_GT(rcu_ctrlblk.curbatch,
9 RCU_batch(cpu))) {

10 list_splice(&RCU_curlist(cpu),
11 &list);
12 INIT_LIST_HEAD(&RCU_curlist(cpu));
13 }
14
15 if (!list_empty(&RCU_nxtlist(cpu)) &&
16 list_empty(&RCU_curlist(cpu))) {
17 list_splice(&RCU_nxtlist(cpu),
18 &RCU_curlist(cpu));
19 INIT_LIST_HEAD(&RCU_nxtlist(cpu));
20
21 /*
22 * start the next batch of callbacks
23 */
24 spin_lock(&rcu_ctrlblk.mutex);
25 RCU_batch(cpu) =
26 rcu_ctrlblk.curbatch + 1;
27 rcu_reg_batch(RCU_batch(cpu));
28 spin_unlock(&rcu_ctrlblk.mutex);
29 }
30 rcu_check_quiescent_state();
31 if (!list_empty(&list))
32 rcu_invoke_callbacks(&list);
33 }

Figure 45:rcu-ltimer rcu_check_callbacks()

1 static void rcu_reg_batch(
2 rcu_batch_t newbatch)
3 {
4 if (RCU_BATCH_LT(rcu_ctrlblk.maxbatch,
5 newbatch)) {
6 rcu_ctrlblk.maxbatch = newbatch;
7 }
8 if (RCU_BATCH_LT(rcu_ctrlblk.maxbatch,
9 rcu_ctrlblk.curbatch) ||

10 (rcu_ctrlblk.rcu_cpu_mask != 0)) {
11 return;
12 }
13 rcu_ctrlblk.rcu_cpu_mask =
14 cpu_online_map;
15 }

Figure 46:rcu-ltimer rcu_reg_batch()

Figure 47 shows how
rcu_check_quiescent_state() checks
that the current CPU has passed through a qui-
escent state since the beginning of the current
grace period. Lines 6–9 check to see if this
CPU has already passed through a quiescent
state, and, if so, simply returns. Lines 19–20
checks to see if this CPU is unaware of the
current grace period, and, if so, snapshots the
current quiescent-state counter on lines 21–22
and then returns. Lines 25–28 checks to see if
this CPU has passed through a quiescent state
since it became aware of the current grace
period, and, if not, simply returns. Execution
reaches line 30 the first time that this CPU
realizes that it has passed through a quiescent
state since it became aware of the current grace
period. Lines 36 and 37 publish the fact that
this CPU has passed through a quiescent state.
Lines 38–41 check to see if this is the last CPU
to pass through a quiescent state, thus ending
the grace period, and returning if not. Line 42
publicizes the end of the grace period, and line
43 invokesrcu_reg_batch() to start a new
grace period, if one is needed.

B Memory Ordering Issues

This paper has heretofore focused on lock-free
search on lists subject to concurrent deletion.
Insertion poses additional problems on systems
with very weak memory ordering, as noted in
recent discussions on LKML [McK01c]. This
appendix focuses on these problems and some
solutions.

Some of these problems may be addressed by
using thewmb() primitive as shown on line
9 of Figure 48. Thiswmb() guarantees that
the element initialization in lines 6–8 is not ex-
ecuted before the element is added to the list
on line 10. On many (but not all) CPUs, this
is sufficient, and the lock-free search on lines
14–26 will then operate correctly.
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1 static void rcu_check_quiescent_state(void)
2 {
3 int cpu = cpu_number_map(
4 smp_processor_id());
5
6 if (!test_bit(cpu,
7 &rcu_ctrlblk.rcu_cpu_mask)) {
8 return;
9 }

10
11 /*
12 * Races with local timer interrupt -
13 * in the worst case
14 * we may miss one quiescent state
15 * of that CPU. That is
16 * tolerable. So no need
17 * to disable interrupts.
18 */
19 if (RCU_last_qsctr(cpu) ==
20 RCU_QSCTR_INVALID) {
21 RCU_last_qsctr(cpu) =
22 RCU_qsctr(cpu);
23 return;
24 }
25 if (RCU_qsctr(cpu) ==
26 RCU_last_qsctr(cpu)) {
27 return;
28 }
29
30 spin_lock(&rcu_ctrlblk.mutex);
31 if (!test_bit(cpu,
32 &rcu_ctrlblk.rcu_cpu_mask)) {
33 spin_unlock(&rcu_ctrlblk.mutex);
34 return;
35 }
36 clear_bit(cpu, &rcu_ctrlblk.rcu_cpu_mask);
37 RCU_last_qsctr(cpu) = RCU_QSCTR_INVALID;
38 if (rcu_ctrlblk.rcu_cpu_mask != 0) {
39 spin_unlock(&rcu_ctrlblk.mutex);
40 return;
41 }
42 rcu_ctrlblk.curbatch++;
43 rcu_reg_batch(rcu_ctrlblk.maxbatch);
44 spin_unlock(&rcu_ctrlblk.mutex);
45 }

Figure 47: rcu-ltimer
rcu_check_quiescent_state()

1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GPF_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 wmb();

10 head.next = p;
11 spin_unlock(&mutex);
12 }
13
14 struct el *search(long key)
15 {
16 struct el *p;
17 p = head.next;
18 while (p != &head) {
19 /* BUG ON ALPHA!!! */
20 if (p->key == key) {
21 return (p);
22 }
23 p = p->next;
24 };
25 return (NULL);
26 }

Figure 48: Insert and Lock-Free Search

However, some CPUs, such as Alpha, have ex-
tremely weak memory ordering such that the
code on line 20 of Figure 48 could see the old
garbage values that were present before the ini-
tialization on lines 6–8.

Figure 49 shows how this can happen on an
aggressively parallel machine with partitioned
caches, so that alternating caches lines are pro-
cessed by the different partitions of the caches.
Assume that the list headerhead will be pro-
cessed by cache bank 0 and that the new el-
ement will be processed by cache bank 1.
On Alpha, thewmb() will guarantee that the
cache invalidates performed by lines 6–8 of
Figure 48 will reach the interconnect before
that of line 10 does, but makes absolutely no
guarantee about the order in which the new
values will reach the reading CPU’s core. For
example, it is possible that the reading CPU’s
cache bank 1 is very busy, but cache bank 0
is idle. This could result in the cache inval-
idates for the new element being delayed, so
that the reading CPU gets the new value for the
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Figure 49: Why rmb() is Required

pointer, but sees the old cached values for the
new element. See Compaq’s Alpha documen-
tation [Compaq01] for more information, or if
you think we are just making all this up.

This can be fixed in an implementation-
independent manner by inserting anrmb()
between the pointer fetch and dereference, as
shown on line 19 of Figure 50. However,
this imposes unneeded overhead on systems
(such as i386, IA64, PPC, and SPARC) that
respect data dependencies on the read side.
A read_barrier_depends() primitive has
been proposed to eliminate overhead no these
systems [Sarma02b]. It is also possible to im-
plement a software barrier that could be used in
place ofwmb() , which would force all read-
ing CPUs to see the writing CPU’s writes in
order[McK01d]. However, this approach is
deemed to impose excessive overhead on ex-
tremely weakly ordered CPUs such as Alpha.7

For the moment,rmb() should be used on
lock-free code paths traversing lists subject to
concurrent insertion.

7CPUs that respect data dependencies would define
such a barrier to simply bewmb() .

1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GPF_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 wmb();

10 head.next = p;
11 spin_unlock(&mutex);
12 }
13
14 struct el *search(long key)
15 {
16 struct el *p;
17 p = head.next;
18 while (p != &head) {
19 rmb();
20 if (p->key == key) {
21 return (p);
22 }
23 p = p->next;
24 };
25 return (NULL);
26 }

Figure 50: Safe Insert and Lock-Free Search
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