
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 8.2
Exploiting Buffer Overflow Vulnerability

Part-II

Course: Advance Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● What is Shellcode?

● From where to get shellcodes?

➔ Writing your own using Assembly Language

➔ Downloading from some Internet source

➔ Creating using PEDA and pwn tools

➔ Creating using Metasploit Framework (msfvenom)

● How to use shellcodes?

➔ Stand alone

➔ Injecting to a vulnerable process address space

3Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

What is a Shellcode?
...

Shell Code

Low address

Hi address

AAAAAAAA

Function Parameters

\x90\x90\x90\x90

Addr to Shell Code

﻿\x31\xc0\x48\xbb
﻿\xd1\x9d\x96\x91
﻿\xd0\x8c\x97\xff
﻿\x48\xf7\xdb\x53
﻿\x54\x5f\x99\x52

Return addr

A shellcode is a machine dependent code that can
be executed by the CPU directly w/o the need of
any compiling, assembling or linking. The typical
goal of a shellcode is to create a shell preferably
with root privileges, that is why it is named as
shellcode. The shellcode is stored in a process
address space at some convenient place, which
can be:
● Code Section
● Process Stack

➔ As part of input buffer
➔ In some environment variable

● Process Heap

To execute a shellcode, all you need to do is
simply transfer control of execution to that address

\x90\x90\x90\x90

4Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Writing your own Shellcode

5Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Can be written in C, but better to write in assembly
● Must know the underlying system calls (execve(), open(), read(),
write(), dup2(), setresuid() and others). For example, place the
string /bin/bash in memory and pass it as argument to syscall()
system call

● Must have a clear understanding of architecture's function calling conventions
● Steps to follow:

➔ Write assembly code and create object file using following command
$ nasm -f elf64 <filename>.nasm

➔ Check out the opcodes in the object file
$ objdump -M intel -D <filename>.o

➔ If opcode of an instruction contain NULL bytes '\x00', then that
assembly instruction must be rewritten. For example

➔ MOV rax, 0 (b8 00 00 00 00)
➔ XOR rax, rax (48 31 c0)
➔ Finally extract the opcode from the object file, which is you shellcode

Writing your own Shellcodes

6Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

﻿#include <stdio.h>
#include <string.h>

char *code = "shellcode";

int main(){
 printf("len:%d bytes\n", strlen(code));
 int (*foo)() = (int(*)())code;
 foo();
 return 0;
}

Using Shellcode in a Standalone C Program
● Once you have written your shellcode. You can use it. Mostly this shellcode is

made a part of the string which is given as input to a vulnerable program for a
buffer overflow attack. But today we will run our shellcodes as a stand alone
C program

● The general format of a C program using a shellcode is shown below:

7Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Writing your own Shellcodes
Proof of Concept

writing_shellcodes/ex1/
writing_shellcodes/ex2/

8Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Downloading Shellcodes From
Internet Archives

9Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Shellcode Archives on Internet
● A good hacker always write his/her own shellcodes, and the task is not

much tricky for assembly guys. The obvious drawback is that you can
write shellcode for the architecture that you are working on. What if you want
the shellcode for other architectures like arm64, powerpc or android.
Moreover, sometimes it becomes a bit tricky if you are not good at assembly
language programming. So being newbies the simplest option is
downloading shellcode for your specific hardware and operating system
from some Internet archives like:

http://www.shell-storm.org/shellcode

http://www.exploit-db.com

http://www.projectshellcode.com

http://www.shell-storm.org/

10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Using Shell Codes Downloaded from
Internet

Proof of Concept
downloaded_shellcodes/myshell.c

downloaded_shellcodes/shell_bind_tcp.c
downloaded_shellcodes/shell_reverse_tcp.c

11Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Generating Shellcodes
using

PWN Tools

12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● We have seen the installation and usage of PEDA in the previous session
which is just a wrapper around gdb. We have used the feature of its
customized view (register, code, and stack) in the previous session. Today, we
are going to use pwntools which is a CTF framework and exploit
development library written in python. It is designed for rapid prototyping and
development and intended to make exploit writing as simple as possible

● We will focus on one of its sub-module called shellcraft, which allows
us to write assembly code similar to what we can do with NASM, but using
python. So you don't have to know much about assembly to make it work

● You can install pwntools using the following command

$ sudo apt-get install python-dev python-pip

$ sudo pip install pwntools

PEDA and PWN Tools

13Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Generating Shellcodes using
PEDA & PWN Tools

Proof of Concept

14Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Generating Shellcodes
using

MSF's msfvenom

15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

MSF and msfvenom
● Metasploit Framework is an open source pentesting framework used for:

➔ Vulnerability research
➔ Writing, testing and using exploit code
➔ Shellcode development

● This comes pre-installed with Kali Linux. There are many interfaces to it like,
msfconsole, msfcli, msfgui, msfweb, and armitage

● Today our main concern is about shellcodes, so we are going to use its
submodule msfvenom, to generate predefined shellcodes suitable for many
platforms and architectures. Some self contained payloads that do a specific task are
available in /usr/share/metasploit-framework/modules/singles/ directory

● msfvenom is a combination of Msfpayload and Msfencode, putting both of these
tools into a single Framework instance

● Additional benefits of using msfvenom are like avoiding bad characters like null
bytes and generating the shellcode in various file formats to be used in C, Python,
or C# programs

● Do dig out another module of MSF, i.e., meterpreter, which is a post
exploitation tool and is used for in-memory dll/so-injection in the memory space of
the exploited process without having to create a new process

16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Generating Shellcodes using
msfvenom

Proof of Concept

17Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

