
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 8.3
Exploiting Buffer Overflow Vulnerability

Part-III

Course: Advance Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me



2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● Finding vulnerabilities in executables

● Crafting input string to programs to shift the flow of control 

● Writing Shell codes

● Injecting shellcode  in the buffer

● Injecting shellcode in environment variables

● Executing shell codes inside gdb

● Executing shell codes outside gdb



3Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Exploiting a Buffer Overflow Vulnerability
PART-I
● Find and understand the vulnerability in the program
● Give it an input string such that the control of flow move to some

piece of code of our choice within the code section



4Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Change the flow of execution to virus()
﻿int getinput(){
  char buf[10];
  int rv = read(0, buf, 1000);
  printf("\nNumber of bytes read are %d",rv);
  return 0;
}

int main(int argc, char *argv[]) {
  getinput();
  return 0;
}
int virus(){
  printf("Let us Hack Planet Earth with Arif
          Butt.\n");
  exit(0);
}

Hi addr

Low addr

FSF main()

buf

FSF
getinput()

AAAAAAAAAAAAAAAA Address of
virus()

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

?

AAAAAAAA

AAAAAAAA

Alignment Space

Alignment Space

Caller's rbp

Saved Return Addr

Function Parameters

AAAAAAAA

AAAAAAAA
AAAAAAAA

BBBBBBBB

AAAAAAAA

main
ret
addr

Process Stack



5Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Changing Control of Flow
Proof of Concept



6Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Exploiting a Buffer Overflow Vulnerability
PART-I
● Find and understand the vulnerability in the program
● Give it an input string such that the control of flow move to some

piece of code of our choice within the code section

PART-II
● Write / Get the shellcode
● Craft the input string such that the control of flow shifts to your
shellcode residing on the stack

● Inject the shellcode  by giving this input string to the vulnerable
program

● Test it inside the debugger
● Test it outside the debugger



7Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Change the flow of execution to Shellcode
﻿int getinput(){
  char buf[10];
  int rv = read(0, buf, 100);
  printf("\nNumber of bytes read are %d",rv);
    return 0;
}

int main(int argc, char *argv[]) {
  getinput();
  return 0;
}
int virus(){
  printf("Let us Hack Planet Earth with Arif
          Butt.\n");
  exit(0);
}

Hi addr

Low addr

FSF main()

buf

  FSF
getinput()

\x90\x90\x90 ... Next location
address

\x4a\xc0\x69\x4e\xf3\xe2...

\x90\x90\x90\x90

\x90\x90\x90\x90

Alignment Space

Alignment Space

Caller's rbp

Saved Return Addr

Function Parameters

\x90\x90\x90\x90

\x90\x90\x90\x90
\x90\x90\x90\x90

Addr of next location

Shellcode

main
ret
addr

22 x NOP Instructions Shellcode

Process Stack



8Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Change the flow of execution to Shellcode
﻿int getinput(){
  char buf[10];
  int rv = read(0, buf, 100);
  printf("\nNumber of bytes read are %d",rv);
    return 0;
}

int main(int argc, char *argv[]) {
  getinput();
  return 0;
}
int virus(){
  printf("Let us Hack Planet Earth with Arif
          Butt.\n");
  exit(0);
}

Hi addr

Low addr

FSF main()

buf

  FSF
getinput()

\x90\x90\x90 ... Next location
address

\x90\x90\x90...

\x90\x90\x90\x90

\x90\x90\x90\x90

\x90\x90\x90\x90

\x90\x90\x90\x90

\x90\x90\x90\x90

Addr of next location

Shellcode

main
ret
addr

22 x NOP Instrs Shellcode

Process Stack

\x90\x90\x90\x90

\x4e\xf3\xe2...



9Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Injecting and Running Shellcode
Proof of Concept



10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

HOME TASKS



11Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Use the executable of vulnerable echo server program
uploaded on the bitbucket account. Carry out the
vulnerability analysis, craft the input string and inject the
shell code that will perform following tasks as discussed
in the Video Session # 39:

● TCP bind shell
● TCP reverse shell

Things to Do



12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● The code integrity property is ensured by making the process
stack, heap, and data sections as non-executable and the text
section as non-writable, which is the default settings in most
modern operating systems

● To make the stack executable we can set the NX (Non-
Executable) bit in x86. A programmer can set this bit during
linking phase by giving the -z noexecstack option to gcc

● The text section is also by default non-writable, and this is also
enforced by memory access permissions using virtual memory (in
the page table)

Code Integrity Protection



13Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● You can bypass Code Integrity Protection  by using a class of
attacks known as return-to-libc, in which you divert the
control flow to C library function system() with the /bin/sh 
parameter.  The fact that the vast majority of programs are linked
with the C library makes this pretty easy. This technique of
attacks is also known as Return-Oriented-Programming (ROP), in
which you reuse existing code in the program, the attacker may
reuse small pieces of program code called “gadgets” to execute
arbitrary (turing-complete) operations

● You can bypass Code Integrity Protection  by making the stack
executable at run-time, e.g., by calling mprotect(), which is
used to change the access protections for the calling process's
memory page containing the stack

Bypassing Code Integrity Protection



14Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● ASLR randomizes the address of stack, heap and hared library sections in a
process address space. Every time a program executes it is given different
addresses, thus preventing an attacker from reliably jumping to an exploited
function in memory

● Linux allows 3 options for its ASLR implementation that can be configured
in /proc/sys/kernel/randomize_va_space  file. Writing 0, 1, or
2 to this will results in the following behaviors:
➔ 0: deactivated
➔ 1: random stack, vdso, libraries; data is after code section 
➔ 2: random data too

➔ The stack is easily randomizable, as all stack addresses are relative to rsp 
or rbp. Similarly data section can also be randomized, if address of data
segment is set to a random value

● The Code can only be randomized by compiling the program as Position
Independent Code/Position Independent Executable. This is the default for
shared libraries, but otherwise executable code is usually placed at fixed
addresses. Note that randomization occurs at load-time, which means that
the segment addresses do not change while the process is running

Address Space Layout Randomization



15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Bruteforce. If the attacker is able to inject payloads multiple times without
crashing the application, they can bruteforce the address they are interested
in (e.g., a target in libc). Otherwise, they can just run the exploit multiple
times until they guess the correct target

● NOP sled. In the case of shellcodes, a longer NOP sled will maximize the
chances of jumping inside it and eventually reaching the exploit code even if
the stack address is randomized

● Restrict entropy. There are various ways of reducing the entropy of the
randomized address. For example, the attacker can decrease the initial stack
size by setting a huge amount of dummy environment variables

● Information leak. The most effective way of bypassing ASLR is by using
an information leak vulnerability that exposes a randomized address, or at
least parts of it. The attacker can also dump parts of libraries (e.g., libc) if
they are able to create an exploit that reads them. This is useful in remote
attacks to infer the version of the library, downloading it from the web, and
thus knowing the right GOT offsets for other functions (not originally linked 
with the binary)

Bypassing - Address Space Layout Randomization



16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● A stack canary is a known value or word that is placed just below the ruturn
address on the stack to monitor buffer overflow. A copy of this word is
saved some where else as well. When the hacker overwrites the return
address using a buffer overflow the canary will also be overwritten. When a
function calls return this canary value is compared with a a saved else where
copy and a mismatch indicates that the stack is over wirtten. To disable this
security option we can compile the program using -fno-stack-
protector option to gcc

● Stack canaries only protect against buffer overflows. Arbitrary memory
writes (e.g. to offsets that can be controlled by the attacker) may be crafted
so that they do not touch the canary value. Guessing the canary value, e.g.
through an information leak or through brute force, is possible and will
bypass the attack. Search out more options that can be used to override
this protection mechanism

Stack Protection: Canaries



17Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

HAPPY LEARNING


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

