
Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000Lecture # 02

HDL for Combinational Circuits - I

• Review of Boolean Logic and Gates
• Hardware Description Language
– SystemVerilog
– VHDL
– Noam / Shimon HDL

• Design and Code following gates/chips using universal NAND gate
– AND
– OR
– NOT

• How to use Hardware Simulator?
• How to do Interactive Chip Testing in h/w Simulator?

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Review
Boolean Logic

Instructor: Muhammad Arif Butt, Ph.D.

4

Elementary Boolean Operations

Instructor: Muhammad Arif Butt, Ph.D.

Gate Symbol Operator

And

Or

Not

Nand

Nor

Xor

	". $

	" + $

	"′

	(". $)’

	(" + $)′

	"⨁$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-14

Basic Logic Gates

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-14

Basic Logic Gates

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-14

Basic Logic Gates

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-14

Basic Logic Gates

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-14

Basic Logic Gates

• An expression formed by binary variables, logical operators,
parenthesis and an equal to sign. The value of a Boolean function
can either be zero or one

5

Boolean Functions

Instructor: Muhammad Arif Butt, Ph.D.

! ", $ = 	"'$ + "$′

! ", $, * = 	"$'* + "$*

! +, ", $, * = +′"′$'* + +"$*

6

Boolean Identities

Instructor: Muhammad Arif Butt, Ph.D.

Commutative law
!" = ("!)
! + " = (" + !)

Associative law
! "' = !" '
! + (" + ' = (! + ") + ')

Distributive law
! " + ' = !" + !'	
! + "' = (! + ") + (! + ')

De Morgan law !") = (!)+"′)
! + " ′ = (!)"′)

7

Boolean Function Truth Table

Instructor: Muhammad Arif Butt, Ph.D.

x y z f

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

! ", $, % = "$ + "′%	

8

Truth Table Boolean Function

Instructor: Muhammad Arif Butt, Ph.D.

x y z f

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

! ", $, % = "$ + "′%	

! ", $, % = "*$*% + "*$% + "$%* + "$%	
! ", $, % = ∑ 1, 3,6, 7

You can simplify a Boolean function using Boolean Identities or Karnough Map methods

9

Hardware Description
Language

Instructor: Muhammad Arif Butt, Ph.D.

10

Hardware Description Language

Instructor: Muhammad Arif Butt, Ph.D.

• Hardware Description Language is a language that describes the
hardware of digital system in textual form

• There are two applications of HDL processing
Ø Hardware Simulation: We let our HDL programs run inside a h/w

simulator to simulate and debug the design. The h/w simulator
interprets the HDL and produce readable o/p, that predicts how the h/w
will behave before it is actually fabricated

Ø Hardware Synthesis: The HDL programs can be compiled into h/w
implementation using synthesizer and h/w compilation tools. The
output of h/w synthesizer is gate level netlist, which is later used to
fabricate an IC or to layout a Printed Circuit Board (PCB)

• There are a variety of HDLs available in the market. The most common
are SystemVerilog (based on C) and VHDL (Very high speed integrated
circuit Hardware Description Language) (based on Ada)

• In this course we will be using a simple/minimal HDL designed and
developed by Noam and Shimon (Designers of the course nand2tetris)

11

Hardware Simulator

Instructor: Muhammad Arif Butt, Ph.D.

• HDL simulators are software packages that simulate expressions written in
one of the hardware description languages, like VHDL, Verilog,
SystemVerilog, and so on

• Hardware Simulator that we will be using is designed and developed by
students of Interdisciplinary Center Herzliya Efi Arazi School of Computer
Science

• It can be used to build and test many different hardware platforms. In this
course, we will use it to design a complete computer, called Hack -- a 16-
bit computer equipped with a screen and a keyboard

• To design and build this Hack computer we need to write hdl programs for
elementary gates, combinational circuits, sequential circuits, registers,
RAM, ALU, control unit and its data path. Every time, we write these hdl
programs, we will test and debug them on this hardware simulator

• This is how h/w engineers build chips for real:
• First the h/w is designed tested and optimized on a software simulator
• Later the resulting gate logic is committed to silicon

12

Design Process

Instructor: Muhammad Arif Butt, Ph.D.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	24

Building a logic gate

The Process:
ü Design the gate architecture

ü Specify the architecture in HDL
ü Test the chip in a hardware simulator
• Optimize the design

• Realize the optimized design in silicon.

?Xor
a

b

ou
t

outputs 1 if one, and only
one, of its inputs, is 1.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	24

Building a logic gate

The Process:
ü Design the gate architecture

ü Specify the architecture in HDL
ü Test the chip in a hardware simulator
• Optimize the design

• Realize the optimized design in silicon.

?Xor
a

b

ou
t

outputs 1 if one, and only
one, of its inputs, is 1.

Behavior
Design Process:
• Use the built-in Nand gate chip having

interface Nand(a=,b=,out=)
• Design your logic circuit using this Nand

gate only. OR. First design the And, Or
and Not gates using this Nand gate and
then use And, Or and Not gates to build
the logic circuit as usual

• Write down the HDL program file
specifying your logic circuit

• Test the chip in a hardware simulator
• Optimize the design
• Realize the optimized design in silicon

Logic
Circuit

/* Nand gate: out = a Nand b */

CHIP Nand {
IN a, b;
OUT out;

BUILTIN Nand;
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-14

Basic Logic Gates

Nand.hdl

Chip Interface

Chip Implementation

a
b out

13

Design of Or Gate Chip

Instructor: Muhammad Arif Butt, Ph.D.

a b out

0 0 0

0 1 1

1 0 1

1 1 1

/** Or gate: out = a or b */
CHIP Or {

IN a, b;
OUT out;

PARTS:
Nand(a=a, b=a, out=w1); //(a)’
Nand(a=b, b=b, out=w2); //(b)’
Nand(a=w1, b=w2, out=out); //(a’b’)’

}

chip
interface

chip
implementation

a
b out

a

b

w1=a’ (a’b’)’
a+b

Or.hdl

CHIP Nand {
IN a, b;
OUT out;

BUILTIN Nand;
}

w2=b’

14

Design of And Gate Chip

Instructor: Muhammad Arif Butt, Ph.D.

a b out

0 0 0

0 1 0

1 0 0

1 1 1

/** And gate: out = a And b */
CHIP And {

IN a, b;
OUT out;

PARTS:
Nand(a=a, b=b, out=w1); //(ab)’
Nand(a=w1, b=w1, out=out); //ab

}

chip
interface

chip
implementation

a
b out

a

b
out

w1

And.hdl

CHIP Nand {
IN a, b;
OUT out;

BUILTIN Nand;
}

15

Design of Not Gate Chip

Instructor: Muhammad Arif Butt, Ph.D.

/** Not gate: out = a’*/
CHIP Not {

IN in;
OUT out;

PARTS:
Nand(a=in, b=in, out=out); //a’

}

chip
interface

chip
implementation

a out

0 1

1 0

a out a out = a’

Not.hdl

CHIP Nand {
IN a, b;
OUT out;

BUILTIN Nand;
}

16

Interactive Chip Testing
on

Hardware Simulator

Instructor: Muhammad Arif Butt, Ph.D.

17

How to Download the H/W Simulator?

Instructor: Muhammad Arif Butt, Ph.D.

• Type the following URL in your browser:
https://bitbucket.org/arifpucit/

• In the public repositories pain, click the coal-repo repository, containing all the
source codes as well as the software tools used in this course

• In the left pane, click Downloads to download the entire repository on your
system. Now on your system just check the contents of tools directory that you
have just downloaded

Arif-MacBook:arifpucit-coal-repo/tools$ ls

HardwareSimulator.sh HardwareSimulator.bat

CPUEmulator.sh CPUEmulator.bat

Assembler.sh Assembler.bat

VMEmulator.sh VMEmulator.bat

JackCompiler.sh JackCompiler.bat

TextComparer.sh TextComparer.bat

builtInChips builtInVMCode bin OS

18

Starting the H/W Simulator

Instructor: Muhammad Arif Butt, Ph.D.

• Follow the following steps to start the h/w simulator on UNIX/Mac OS:
Ø Open the terminal
Ø Go to tools directory
Ø Set execute permissions of the file HardwareSimulator.sh
Ø Execute it

19

Interactive Chip Testing Demo

Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Interactive Testing
02/Or.hdl, And.hdl,

Not.hdl

20

Java Based H/W Simulator

Instructor: Muhammad Arif Butt, Ph.D.

21Instructor: Muhammad Arif Butt, Ph.D.

Loading a Chip in the H/W Simulator

Navigate to a directory
and select an .hdl file.

22Instructor: Muhammad Arif Butt, Ph.D.

§ Read-only view of the loaded .hdl file;
§ Defines the chip logic;
§ To edit it, use an external text editor.

§ Names and current values of the
chip’s input pins;

§ To change their values, enter
the new values here.

§ Names and current values of
the chip’s output pins;

§ Calculated by the simulator;
read-only.

§ Names and current values of the
chip’s internal pins
(used to connect the chip’s parts,
forming the chip’s logic);

§ Calculated by the simulator;
read-only.

Exploring the GUI of the H/W Simulator

23

Exploring The Chip Logic

Instructor: Muhammad Arif Butt, Ph.D.

1. Click any one of
the chip PARTS

2. A table pops up, showing the
input/output pins of the selected
part (actually, its API), and their
current values;
A convenient debugging tool.

24Instructor: Muhammad Arif Butt, Ph.D.

Interactive Chip Testing

1. User: changes the values of some input
pins

2. Simulator: responds by:
§ Darkening the output and internal pins,

to indicate that the displayed values are
no longer valid

§ Enabling the eval
(calculator-shaped) button.

25Instructor: Muhammad Arif Butt, Ph.D.

Interactive Chip Testing (cont…)

1. User: changes the values of some input
pins

2. Simulator: responds by:
§ Dimming the output and internal pins,

to indicate that the displayed values are
no longer valid

§ Enabling the eval
(calculator-shaped) button.

3. User: Clicked the eval button
4. Simulator: re-calculates the values

of the chip’s internal and output
pins (i.e. applies the chip logic to
the new input values)

5. To continue interactive testing,
enter new values into the input
pins and click the eval button.

Re-
calc

26

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

• Download H/W simulator along with other tools
and programs from https://bitbucket.org/arifpucit/
and run it on your system (Mac, Linux,
Windows)

• Perform interactive chip testing of the chips
designed from built-in NAND gate in today’s
session

• Practice writing HDL for some basic logic
circuits using the (AND, OR, NOT) chips that we
have designed today, and perform interactive chip
testing of these newly designed chips

• Explore the GUI of the h/w simulator

