
Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000Lecture # 05

HDL for Combinational Circuits - IV

• Multi-bit Gates (more than 2 input gates)
– And4way
– Or4way
– Mux4way

• Array of Bits/Busses (2 input gate with each input of 16 bits)
– And16
– Or16
– Not16
– Mux16

• Combining Multi-bit gates with Array of Bits
– And4way16
– Mux4way 16
– Mux8way16

• What are built-in Chips?
– Explicit use of built-in Chips
– Implicit use of built-in Chips

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Multi-Bit Gates

Instructor: Muhammad Arif Butt, Ph.D.

4

And4way: Gate that ANDs 4 bits

Instructor: Muhammad Arif Butt, Ph.D.

• Suppose we want to design an AND gate chip with four inputs
• Although we can design it using the built-in NAND gate, but why to

reinvent the wheel.
• Let us design it using the already designed AND gate chips with two

inputs

CHIP And4way{
IN a,b,c,d;
OUT out;
PARTS:
And(a=a, b=b, out=w1);
And(a=w1, b=c, out=w2);
And(a=w2, b=d, out=out);

}

���������� 0RUH�&RPELQDWLRQDO�&LUFXLWV

ZZZ�HGZDUGERVZRUWK�FRP�0\����7H[WERRNB+70�0\7H[W����B&K��B9���KWP �����

:H�QRZ�FRQVLGHU�DQ�DFWLYH�KLJK�GHFRGHU���)RU�WKLV�DQG�RWKHU�H[DPSOHV��ZH�DVVXPH�WKDW�WKH�GHFRGHU�KDV�EHHQ�HQDEOHG��HOVH�DOO�RI�LWV�RXWSXWV�DUH�����$Q�DFWLYH�KLJK
GHFRGHU�RXWSXWV�ORJLF���IRU�LWV�VHOHFWHG�RXWSXW�DQG�ORJLF���IRU�WKH�RXWSXWV�QRW�VHOHFWHG���)RU�)���ZH�KDYH�

6HHNLQJ�D�JDWH�WKDW�RXWSXWV���LI�DW�OHDVW�RQH�RI�LWV�LQSXWV�LV����ZH�DUH�OHG�WR�WKH�25�JDWH�

6HHNLQJ�D�JDWH�WKDW�RXWSXWV���RQO\�LI�DOO�LWV�LQSXWV�DUH����ZH�DUH�OHG�WR�WKH�125�JDWH�

And4way.hdl

w1
w2

out

a

b

c

d

And4way
And

And
And

out

5

Or4way: Gate that ORs 4 bits

Instructor: Muhammad Arif Butt, Ph.D.

• In a similar fashion, we can design an OR gate chip with four
inputs using the already designed OR gate chips with two inputs

CHIP Or4way{

IN a,b,c,d;

OUT out;

PARTS:

Or(a=a, b=b, out=w1);

Or(a=w1, b=c, out=w2);

Or(a=w2, b=d, out=out);

}

Or4way.hdl

Or4way Or
Or

Or

6

Mux4way: (using 2x1 Mux)

Instructor: Muhammad Arif Butt, Ph.D.

CHIP Mux4way{

IN a,b,c,d, sel[2];

OUT out;

PARTS:

Mux(a=a, b=b, sel=sel[0], out=w1);

Mux(a=c, b=d, sel=sel[0], out=w2);

Mux(a=w1, b=w2, sel=sel[1], out=out);

}

Sel[1] Sel[0] out

0 0 a

0 1 b

1 0 c

1 1 d

sel[0]
sel[1]

Mux4way.hdl

Mux

Mux

Mux

7Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

05/And4way.hdl
05/Or4way.hdl
05/Mux4way.hdl

Multi Bit Gates Demo

8

Array of Bits / Busses

Instructor: Muhammad Arif Butt, Ph.D.

9

Array Of Bits

Instructor: Muhammad Arif Butt, Ph.D.

• While designing hardware, a lot of times we need to manipulate a
bunch of bits together and it is conceptually convenient to think
about the bunch of bits that are manipulated together as one
entity called busses

• Example: A chip that performs bit-wise AND of two 16 bit
numbers. So the chip has two inputs each of 16 bits. The chip also
has an output of 16 bits. So in reality, the chip has 32 wires feeding
into it, and 16 wires going out of it, but still it's convenient to think
about it as two numbers feeding in and one number feeding out

CHIP And16 {
IN a[16], b[16];
OUT out[16];

PARTS:
/ / Put your code here:

}

10

And16: Gate that And two 16-bit Numbers

Instructor: Muhammad Arif Butt, Ph.D.

a = 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 0
b = 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0

out = 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0

CHIP And16{

IN a[16], b[16];

OUT out[16];

PARTS:

And(a=a[0], b = b[0], out=out[0]);

And(a=a[1], b = b[2], out=out[1]);

And(a=a[2], b = b[3], out=out[2]);

. . . .

And(a=a[15], b = b[15], out=out[15]);

}

And16.hdl

And16

And

And

And

And

. . .

11

Or16: Gate that Or two 16-bit Numbers

Instructor: Muhammad Arif Butt, Ph.D.

a = 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 0
b = 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0

out = 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0

CHIP Or16{

IN a[16], b[16];

OUT out[16];

PARTS:

Or(a=a[0], b = b[0], out=out[0]);

Or(a=a[1], b = b[2], out=out[1]);

Or(a=a[2], b = b[3], out=out[2]);

. . . .

Or(a=a[15], b = b[15], out=out[15]);

}

Or16.hdl

Or16

Or

Or

Or

Or

. . .

12

Not16: Gate that Perform Not of 16-bit Number

Instructor: Muhammad Arif Butt, Ph.D.

a = 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0

out = 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1

Not16.hdl

CHIP Not16{

IN a[16];

OUT out[16];

PARTS:

Not(in=a[0], out=out[0]);

Not(in=a[1], out=out[1]);

Not(in=a[2], out=out[2]);

. . . .

Not(in=a[15], out=out[15]);

}

16 16
a[16]

out[16]

13

Mux16

Instructor: Muhammad Arif Butt, Ph.D.

Mux16.hdl

/*

* 16-bit multiplexor:

* for i = 0..15 out[i] = a[i] if sel == 0

* b[i] if sel == 1

*/

CHIP Mux16 {

IN a[16], b[16], sel;

OUT out[16];

PARTS:

Mux(a=a[0], b=b[0], sel=sel, out=out[0]);

Mux(a=a[1], b=b[1], sel=sel, out=out[1]);

Mux(a=a[2], b=b[2], sel=sel, out=out[2]);

…

Mux(a=a[15], b=b[15], sel=sel, out=out[15]);

}

16

16

16

14

Concept of Sub-Buses

Instructor: Muhammad Arif Butt, Ph.D.

• Buses are indexed right to left: if foo is a 16-bit bus, Then foo[0] is
the right-most bit (LSb), and foo[15] is the left-most bit (MSb)

• Buses can be composed from sub-buses, i.e., we can compose a 16
bit bus from two 8 bit buses

• Example: In the code snippet below, we have two 8 bit buses
namely lsb and msb. In the first 16 bit value to And16 chip we plug
in the 8 bits of lsb and the 8 bits of msb. Note the dotdot notation
using which we can mention the sub range of a bus

• Lastly if you want to initialize an entire bus with zeros or ones, you
can do so in one command by assigning “true” or “false” to the bus

. . .
IN lsb[8], msb[8], …
. . .
And16(a[0..7]=lsb, a[8..15]=msb, b=…, out=…);

15Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

05/And16.hdl
05/Or16.hdl
05/Mux16.hdl

Gates with Buses: Demo

16

Combining
Multi-bit Gates and Array of Bits

Instructor: Muhammad Arif Butt, Ph.D.

17

And4way16

Instructor: Muhammad Arif Butt, Ph.D.

• Suppose now we need to build a chip that bit-wise And four 16 bit numbers. We
can design this chip using three And16 chips each capable of Anding two 16 bit
numbers
Ø The first And16 chip will bit-wise And two 16 bit numbers and place the result in a

variable, w1
Ø The second And16 chip will bit-wise And the third 16 bit number with w1 and place

the result in w2
Ø The third Add16 chip will bit-wise And the fourth 16 bit number with w2 and generate

the final output

CHIP And4way16 {

IN first[16], second[16],
third[16], fourth[16];

OUT out[16];

PARTS:

And16(a=first, b = second, out=w1);

And16(a=w1, b = third, out=w2);

And16(a=w2, b = fourth, out=out);

}

And4way16.hdl

And16

And16

And16

18

Mux4way16

Instructor: Muhammad Arif Butt, Ph.D.

Sel[1] Sel[0] out

0 0 a

0 1 b

1 0 c

1 1 d

Mux4Way16.hdl

/**
* 4-way 16-bit multiplexor:
* out = a if sel == 00
* b if sel == 01
* c if sel == 10
* d if sel == 11
*/
CHIP Mux4Way16 {

IN a[16], b[16], c[16], d[16], sel[2];
OUT out[16];

PARTS:

Mux16(a=a, b=b, sel=sel[0], out=w1);
Mux16(a=c, b=d, sel=sel[0], out=w2);
Mux16(a=w1, b=w2, sel=sel[1], out=out);

}

Mux16

Mux16

Mux16

16

16

19

Mux8way16

Instructor: Muhammad Arif Butt, Ph.D.

Mux8Way16.hdl

CHIP Mux8Way16 {

IN a[16], b[16], c[16], d[16], e[16], f[16], g[16], h[16],

sel[3];

OUT out[16];

PARTS:

Mux4Way16(a=a, b=b, c=c, d=d, sel=sel[0..1], out=Mux4abcd);

Mux4Way16(a=e, b=f, c=g, d=h, sel=sel[0..1], out=Mux4efgh);

Mux16(a=Mux4abcd, b=Mux4efgh, sel=sel[2], out=out);

}

Mux8Way16.hdl

/* 8-way 16-bit mux
* out = a if sel == 000
* out = b if sel == 001

…………
* out = b if sel == 001
*/

Mux4way16

Mux4way16

Mux16

20Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

05/And4way16.hdl
05/Mux4way16.hdl
05/Mux8way16.hdl

Multi-Bit Gates with Buses: Demo

21

What is a Built-in Chip?

Instructor: Muhammad Arif Butt, Ph.D.

22

Built-in Chips

Instructor: Muhammad Arif Butt, Ph.D.

// Mux16 gate (example)
CHIP Mux16 {

IN a[16],b[16],sel;
OUT out[16];
BUILTIN Mux16;

}

General
• A built-in chip has an HDL interface and a Java

implementation (e.g. here: Mux16.class)
• The name of the Java class is specified following

the BUILTIN keyword
• Built-In implementations of all the chips that are

supplied in the tools/buitInChips directory
Built-in chips are used to:
• Implement basic primitive gates to build other gates (Nand and DFF)
• Provide the functionality of chips that the user did not implement for some reason
• Improve simulation speed and save memory (when used as parts in complex chips)
• Implement chips that have peripheral side effects (like I/O devices)
• Implement chips that feature a GUI (for debugging)
• Built-in chips can be used either explicitly, or implicitly

Note: The supplied simulator software features built-in chip implementations of all the chips in the Hack
chip set. If you don’t implement some chips from the Hack chipset, you can still use them as chip-parts of
other chips: Just rename their given stub files to, say, Mux16.hdl1. This will cause the simulator to use the
built-in chip implementation

23

Explicit Use Of Built-in Chips

Instructor: Muhammad Arif Butt, Ph.D.

The chip is loaded from the tools/buitIn
directory (includes executable versions
of all the chips mentioned in the book).

Standard interface.

Built-in implementation.

24

Implicit Use Of Built-in Chips

Instructor: Muhammad Arif Butt, Ph.D.

/** Exclusive-or gate. out = a xor b */
CHIP Xor {

IN a, b;
OUT out;
PARTS:
Not(in=a,out=Nota);
Not(in=b,out=Notb);
And(a=a,b=Notb,out=aNotb);
And(a=Nota,b=b,out=bNota);
Or(a=aNotb,b=bNota,out=out);

}

• When any HDL file is loaded, the simulator parses its definition. For each internal chip
Xxx(...) mentioned in the PARTS section, the simulator looks for an Xxx.hdl file in the same
directory (e.g. Not.hdl, And.hdl, and Or.hdl in this example).

• If Xxx.hdl is found in the current directory (e.g. if it was also written by the user), the
simulator uses its HDL logic in the evaluation of the overall chip.

• If Xxx.hdl is not found in the current directory, the simulator attempts to invoke the file
tools/builtIn/Xxx.hdl instead.

• And since tools/builtIn includes executable versions of all the chips mentioned in the book, it
is possible to build and test any of these chips before first building their lower-level parts.

25

Summary of Built-in Chips

Instructor: Muhammad Arif Butt, Ph.D.

• If you don’t implement some chips, you can still use them as chip-
parts in other chips (the built-in implementations will kick in)

• Remember a chip cannot be used in its own implementation

26

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

• Perform interactive testing of the chips designed in
today’s session on the h/w simulator. You can
download the .hdl, .tst and .cmp files of above
chips from the course bitbucket repository:

https://bitbucket.org/arifpucit/coal-repo/
• Before moving ahead, ensure that you have

designed all these chips, as we will be needing
them to design the Hack Computer

30

Combinational Circuits Chips

Instructor: Muhammad Arif Butt, Ph.D.

Given: Nand
Goal: Build the following gates:

Elementary Logic Gates
• Not
• And
• Or
• Xor
• 2x4 Decoder
• 8x3 Encoder
• 2x1 Mux
• 4x1 Mux
• 1x2 Dmux
• 1x4 Dmux

Multi-Way Variants
• Or4way
• And4way
• Mux4way
• DMux4way

Multi-Bit Variants
• Not16
• And16
• Or16
• Mux16
• DMux16

Mixed Variants
• Or4way16
• And4way16
• Mux4way16
• Mux8way16

• Whenever there is a confusion,
please refer to HDL survival
guide available on

http://www.arifbutt.me

