
Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000Lecture # 06

Data Storage - I

• Data Representation in Computers
• Unsigned Numbers
• Signed Numbers
– Sign magnitude representation & its limitations
– 1s Complement representation & its limitations
– 2s Complement
– Comparisons and pros and cons of each

• Ranges and different Storage Sizes
• Overflow in Unsigned & Signed Numbers
• How the Hardware Detect an Overflow
• Concept of Sign Extension
• Encoding Characters and Strings (ASCII & Unicode)

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Different Types of Numbers

Instructor: Muhammad Arif Butt, Ph.D.

• Natural Numbers (N): Set of positive numbers
• Whole Numbers (W): Set of zero and positive natural numbers
• Integers (Z): Set of zero, positive natural numbers and their additive inverses. An integer is a

number that can be written without a fractional component
• Real Numbers (R): A continuous quantity that can represent a distance along a line (They are

called real because they are not imaginary)
• Imaginary Numbers are numbers that when squared gives use a negative number, e.g., sqrt(-1)

• Rational numbers (Q): are numbers that can be expressed as ratio of two integers, e.g., !" and "
are

two fractions that represent the same rational number 0.5
• Irrational Numbers (Q’): are numbers that cannot be expressed as ratio of two integers, e.g.,

3.141592653589793238462	which is not exactly equal to ""
0 	

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Carnegie Mellon

!28

Representing Numbers in Binary
• Different types of number

• Integer (Negative and Non-negative)

• Fractions

• Irrationals

0 1 2 3 4 5 6 7-1-2-3-4-5-6-7 ……
Note:
• Most of the programming languages provide support for storing and manipulating rational numbers
• In Computers irrational numbers cannot be fully and accurately represented/manipulated

4

Unsigned Numbers

Instructor: Muhammad Arif Butt, Ph.D.

5

Unsigned Numbers

Instructor: Muhammad Arif Butt, Ph.D.

Base 10 number representation (Decimal)
52110 = 5x102 + 2x101 + 1x100 = 52110

Base 2 Number Representation (Binary)
10112 = 1x23 + 0x22 + 1x21 + 1x20 = 1110

Base 16 Number Representation (Hexadecimal)
9E16 = 100111102

Base 8 Number Representation (Octal)
468 = 1001102

Decimal Hex Octal Binary
0 0 0 0000
1 1 1 0001
2 2 2 0010
3 3 3 0011
4 4 4 0100
5 5 5 0101
6 6 6 0110
7 7 7 0111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011
12 C 14 1100
13 D 15 1101
14 E 16 1110
15 F 17 1111

Note: These all are weighted and positional number systems, with each bit having a weight depending on its position

Students should know how to convert a number from one base to another

6

Encoding Signed Numbers

Instructor: Muhammad Arif Butt, Ph.D.

7

Encoding Signed Numbers

Instructor: Muhammad Arif Butt, Ph.D.

• Theoretically there are three ways to encode the signed numbers:

Ø Sign Magnitude Encoding

Ø 1’s Complement Encoding

Ø 2’s Complement Encoding

Carnegie Mellon

!6

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-11012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

4

• Unsigned byte range can be represented using a number line as below:

• Signed byte range can be represented using a number line as below:
0 255

-127/128 +127

8

Sign Magnitude Encoding

Instructor: Muhammad Arif Butt, Ph.D.

How to Encode a Negative Number:
• The most natural way of encoding a signed number is

by its sign and magnitude
• MSb is reserved to represent/encode the sign. 0 for

positive and 1 for negative and the remaining bits
represents the magnitude

• The four bits representations of signed numbers using
sign magnitude encoding is shown in the table

Decimal Binary
Bits

7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000
-0 1000
-1 1001
-2 1010
-3 1011
-4 1100
-5 1101
-6 1110
-7 1111

9Instructor: Muhammad Arif Butt, Ph.D.

0010 2
+)1011 +) -3
1101 -5

Limitations:
• Two different encodings for zeros (positive & negative)

+0 = 0000 and -0 = 1000

Sign Magnitude Encoding (cont…)
Decimal Binary

Bits
7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000
-0 1000
-1 1001
-2 1010
-3 1011
-4 1100
-5 1101
-6 1110
-7 1111

• Subtraction can’t be done using addition, e.g.:
+2 + (-3) = -1

• How to do subtraction using Sign Magnitude?
Ø If the numbers have same sign, add magnitudes and keep the sign

Ø If the numbers have different signs, then subtract the smaller magnitude
from the larger one. The sign of the larger magnitude is the sign of the result

Ø Note: So you need a separate hardware for subtraction

10

1’s Complement Encoding

Instructor: Muhammad Arif Butt, Ph.D.

Decimal Binary
Bits

7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000
-0 1111
-1 1110
-2 1101
-3 1100
-4 1011
-5 1010
-6 1001
-7 1000

How to Encode a Negative Number:
• Take 1’s complement of the positive number to represent

it’s corresponding negative number
• The four bits representations of signed numbers using

1’s complement encoding is shown in the table
• Whenever, a signed number has its MSb as 1, that means

it is a negative number. So take its 1’s complement and
represent it with a negative sign

11Instructor: Muhammad Arif Butt, Ph.D.

Limitations:
• Two different encodings for zeros (positive & negative)

+0 = 0000 and -0 = 1000

1s Complement Encoding (cont…)

• You can do the subtraction using addition, however,
doesn’t always work:

+1 + (-1) = 0
0001 1

+)1110 +) -1
1111 -0

Decimal Binary
Bits

7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000
-0 1111
-1 1110
-2 1101
-3 1100
-4 1011
-5 1010
-6 1001
-7 1000

12

2s Complement Encoding

Instructor: Muhammad Arif Butt, Ph.D.

Decimal Binary
Bits

7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
+/-0 0000
-1 1111
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

How to Encode a Negative Number:
• Take 2’s complement of the positive number to represent

it’s corresponding negative number
• The four bits representations of signed numbers using

2’s complement encoding is shown in the table
• Whenever, a signed number has its MSb as 1, that means

it is a negative number. So take its 2’s complement and
represent it with a negative sign

13Instructor: Muhammad Arif Butt, Ph.D.

Limitations Resolved:
• Single encoding for zero (no concept of negative zero)

+0 = 0000 and -0 = 0000

2s Complement Encoding (cont…)
Decimal Binary

Bits
7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
+/-0 0000
-1 1111
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

• 7+1 becomes -8 (called overflow. More on it later)
0111 7

+)0001 +) 1
1000 -8

• Subtraction can be done using addition, so you don’t
need a separate hardware for subtraction. For example:

0001
+) 1111

0000

+1 + (-1) = 0
1

+) -1
0

0010
+) 1101

1111

+2 + (-3) = -1
2

+) -3
-1

14

Comparison of 4 bit Signed and Unsigned Numbers

Instructor: Muhammad Arif Butt, Ph.D.

Binary
Bits

Unsigned SM 1s Comp 2’s Comp

0000 0 0 0 0
0001 1 1 1 1
0010 2 2 2 2
0011 3 3 3 3
0100 4 4 4 4
0101 5 5 5 5
0110 6 6 6 6
0111 7 7 7 7
1000 8 -0 -7 -8
1001 9 -1 -6 -7
1010 10 -2 -5 -6
1011 11 -3 -4 -5
1100 12 -4 -3 -4
1101 13 -5 -2 -3
1110 14 -6 -1 -2
1111 15 -7 -0 -1

15

Mapping Signed « Unsigned

Instructor: Muhammad Arif Butt, Ph.D.

2’s Comp
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

=

+ 16

- 16

16

Ranges of Signed Numbers

Instructor: Muhammad Arif Butt, Ph.D.

Decimal 2s Comp 1s Comp SM
7 0111 0111 0111
6 0110 0110 0110
5 0101 0101 0101
4 0100 0100 0100
3 0011 0011 0011
2 0010 0010 0010
1 0001 0001 0001
0 0000 0000 0000
-0 0000 1111 1000
-1 1111 1110 1001
-2 1110 1101 1010
-3 1101 1100 1011
-4 1100 1011 1100
-5 1011 1010 1101
-6 1010 1001 1110
-7 1001 1000 1111
-8 1000 - -

Range for Unsigned Numbers:
0 to 2n - 1

Range for signed Numbers (2’s Comp):
- 2n-1 to 2n-1 - 1

Range for signed Numbers (SM & 1’s Comp):
- (2n-1 – 1) to 2n-1 - 1

Note: Since 2’s complement has only one way of
representing/encoding zero, so we have one additional
number on the negative side

17

Integer Ranges with Different Storage Sizes

Instructor: Muhammad Arif Butt, Ph.D.

The range of 64 bit integers is large enough for most needs. Of course there are
exceptions, like 20! = 51090942171709440000

Storage Minimum Maximum
Unsigned (8 bits) 0 255

Signed (8 bits) -128 127

Unsigned (16 bits) 0 65535

Signed (16bits) -32768 32767

Unsigned (32 bits) 0 4294967295

Signed (32bits) -2147483648 2147483647

Unsigned (64 bits) 0 18446744073709551615

Signed (64 bits) -9223372036854775808 9223372036854775807

18

Overflow after Addition
When using 2’s Complement

Encoding

Instructor: Muhammad Arif Butt, Ph.D.

19

Overflow in Unsigned Addition

Instructor: Muhammad Arif Butt, Ph.D.

• Overflow is a condition that occurs when a calculation produces
a result that is greater in magnitude than what a given register or
a storage location can store

• An overflow can be detected by the hardware if there is a
carry out from the most significant bit after addition (Check
Carry Flag after addition, if set then overflow)

• Consider addition of two 4-bit unsigned numbers:

1001
+) 0101

1110

9
+) 5

14
Normal Case:

Overflow Case:
1010

+) 0111
10001
0001

10
+) 7

17
1

Decimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

20Instructor: Muhammad Arif Butt, Ph.D.

• Overflow will never occur when you add a positive
number to a negative number. It will occur only when the
two operands have same sign, but the result hasn’t

• Overflow will occur when you add two negative numbers
and get a positive result called Negative Overflow

0110
+) 0101

1011

6
+) 5

11

1010
+) 1001
10011
0011

-6
+) -7

-13
3

Decimal Binary
7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000
-0 0000
-1 1111
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

There is no carry out from the MSb, however,
an overflow has occurred, because 1011 means
-5, when evaluated in 2’s complement

There is carry out from the MSb, so, an
overflow has occurred, because 0011
means +3, when evaluated in 2’s
complement

• Overflow will occur when you add two positive numbers
and get a negative result called Positive Overflow

Overflow in Signed Addition

21

Is This Signed Addition an Overflow?

Instructor: Muhammad Arif Butt, Ph.D.

1111
+) 1110

11011

• Consider the following example in which two four bit
numbers are added. There is a carry out from the MSb and
the result is in 5 bits. Is this an example of overflow:

Decimal Binary
7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000
-0 0000
-1 1111
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

• This is not an overflow by definition. Because even after
truncating the 5 bits result in 4 bits (bit width of the
datatype) the result is correct

1111
+) 1110

1101

-1
+) -2

-31
Truncate

• Sign Extension: It is the concept of increasing the number of
bits of a binary number while preserving its sign and
magnitude. This can be done by padding the left side with
sign bit

22

How does the Hardware Detect an Overflow?

Instructor: Muhammad Arif Butt, Ph.D.

• Detecting overflow after adding two unsigned numbers:
Ø This can be detected by the hardware if there is a carry out from

the most significant bit (Check Carry Flag (CF) after addition, if
set then overflow)

• Detecting overflow after adding two signed numbers:
Ø This can be detected by the hardware if the carry-in in the MSb

and carry-out from the MSb are different (Check Overflow Flag
(OF) after addition, if set then overflow)

• Remember, the hardware is responsible for setting /resetting these two
flags

• For 4 bits signed numbers (in 2s complement representation) detect
the overflow in following examples:

1111
+) 1110

11011

1010
+) 1001

0011

0110
+) 0101

1011

0010
+) 0101

0111

1110
+) 0101

00111 0 1 0

1 0 1 1 0

23

Encoding Characters/Strings
Inside Computers

Instructor: Muhammad Arif Butt, Ph.D.

24

Representing Characters And Strings (ASCII)

Instructor: Muhammad Arif Butt, Ph.D.

• The ASCII code is used to
give to each symbol / key
from the keyboard a unique
number called ASCII code

• It can be used to convert text
into ASCII code and then into
binary code

• The 8-bit ASCII table
contains 256 codes (from 0 to
255)

• This slide shows some
common ASCII codes

© 101 Computing – www.101Computing.net

ASCII Table
The ASCII code is used to give to each symbol / key from the keyboard a unique number called ASCII code.
It can be used to convert text into ASCII code and then into binary code. It can be used within your code to identify specific
characters in a string or specific keys being pressed on the keyboard.

The ASCII table contains 256 codes (from 0 to 255). The table below only shows the most useful ASCII codes.
Vari
able Assignment
 Char ASCII Code

(Decimal)
A 65
B 66
C 67
D 68
E 69
F 70
G 71
H 72
I 73
J 74
K 75
L 76
M 77
N 78
O 79
P 80
Q 81
R 82
S 83
T 84
U 85
V 86
W 87
X 88
Y 89
Z 90

Char ASCII Code
(Decimal)

a 97
b 98
c 99
d 100
e 101
f 102
g 103
h 104
i 105
j 106
k 107
l 108

m 109
n 110
o 111
p 112
q 113
r 114
s 115
t 116
u 117
v 118
w 119
x 120
y 121
z 122

Char ASCII Code
(Decimal)

0 48
1 49
2 50
3 51
4 52
5 53
6 54
7 55
8 56
9 57

Char ASCII Code
(Decimal)

space 32
! 33
" 34
35
$ 36
% 37
& 38
' 39
(40
) 41
* 42
+ 43
, 44
- 45
. 46
/ 47
: 58
; 59
< 60
= 61
> 62
? 63
@ 64
[91
\ 92
] 93
^ 94
_ 95
` 96
{ 123
| 124
} 125
~ 126
µ 145
¶ 146
“ 147
” 148
• 149
× 152

Char ASCII Code
(Decimal)

¼ 128
£ 163
¥ 165
$ 36
© 169
™ 153
° 176
× 152
¡ 161
¿ 191

25Instructor: Muhammad Arif Butt, Ph.D.

• Today the Unicode Standard is the universal character-encoding standard
used for representation of text for computer processing

• Unlike 7-bit standard ASCII, which can encode the English language
alphabets only, Unicode can encode a variety of languages spoken around
the world

• The Unicode is a standard scheme for representing plain text, however, it is
not a scheme for representing rich text

• Unicode is platform, program, and language independent
• The common encoding formats used by Unicode are UTF-8, UTF-16 and

UTF-32 (Unicode Transformation Format)
• UTF-8 is the default encoding form for a wide variety of Internet standards

and uses one byte. The first 128 Unicode code points represent the ASCII
characters, which means that any ASCII text is also a UTF-8 text

• The W3C (World Wide Web Consortium) specifies that all XML
processors must read UTF-8 and UTF-16 encoding

Representing Characters And Strings (Unicode)

26

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

• Practice converting signed and unsigned numbers from
one base to another base, e.g., decimal, binary, octal,
hex. Confirm your working by using online base
conversion calculators:

https://www.branah.com/ascii-converter
https://www.binaryconvert.com/index.html

• Write down a C program that checks the minimum and maximum value that
can be stored in signed and unsigned data types like char, short,
int, long, and long long. Does this has something to do with
the h/w and operating system (32 bit or 64 bit)

• Write down a C program that verify as the what happens when a signed or
unsigned variable of char data type overflows

