ese Ol oS
A \

Memory

@R1
a —o h CHIP Xor { program . > D=
; ' | IN a, b; ALU
\ notb aAndotd OUT out;) i) instructon @Qtemp
\/ \ lata M=D
b out ’ PARTS:: ’
w. / Hbta / Not (:!_I'l=a, out=nota) ; '\;s;:rgégl
’ | notaAndb Not (in=b, out=notb) ; "
4/ And (a=nota, b=b, out=wl);
o CICHEEL JeRaOEe, CRIESIA) & 0000000000000001
Or (a=wl, b=w2, out=out);
} 1111110000010000
0000000000010000
L t 5! 15 1110001100001000
[J []
Instruction Set Architecture - I1
global main
SECTION .data
msg: db "Learning is fun with Arif", O0Ah, Oh
len msg: equ $ - msg 0: b8 01 00 00 0O
SECTION .text 5. bf 01 00 00 00
#include<stdio.h> T e rax, 1 a: 48 be 00 00 00 00 00
#include<stdlib.h> mov rdi, 1 11: 00 00 00
int main() mov rsi,msg H 14: ba 1b 00 00 00
printf ("Learning is fun with Arif\n"); ‘ ' Z;Zc;}l{' B 19: 0f 05
exit (0); mov rax, 60 1b: b8 3c 00 00 00
} mov rdi, 0 20: bf 00 00 00 00
syscall 25: 0f 05

Slides of first half of the course are adapted from:

https://www.nand2tetris.org

Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6 XpZUh3X2dPR 100MUE/view

Instructor: Muhammad Arif Butt, Ph.D.

Today’s Agenda

 Five Dimensions of ISA
1. Class of ISA

Types and Sizes of Operands

Operations (including control flow instructions)
Memory Addressing Models and Addressing Modes
Encoding an ISA

A

Instructor: Muhammad Arif Butt, Ph.D. 2

‘&) Instruction Set Architecture (ISA

« Every computer has an Instruction Set Architecture (ISA), which is
the set of instructions, registers, memory space and other features
visible to the assembly language programmer

e It 1s an Interface between hardware and low-level software and
sometimes referred to as a machine language, although it 1s not
entirely accurate.

* Example ISAs: x86, ARM, MIPS, PowerPC, SPARC, RISC-V
* Five dimensions of ISA:

1. Class of ISA
Types and Sizes of Operands
Operations (including control flow instructions)
Memory Addressing Models and Addressing Modes
Encoding an ISA

A

Instructor: Muhammad Arif Butt, Ph.D. 3

1. Classes of ISA

Instructor: Muhammad Arif Butt, Ph.D.

Stack Based Machine

* Operands are implicit at the top of the stack for ALU operation. One operand
for push/pop. The result is also stored at top of stack. (Maximum number of
operands allowed is one)

« Sample Code:a = (b+c)*d-e Processor
push b

push c
&,

push d
mul
push e
sub Memory
pop a
« Attributes
> Short instructions

> Compiler is easy to write
> Inefficient code

* Example: Early machines are HP 3000/70. Today Java VM
Instructor: Muhammad Arif Butt, Ph.D. >

TOS

Accumulator Based Machine

* One operand 1s in the Accumulator register (implicit) and the other is in the
memory (explicit). The result is stored in the Accumulator. (Only one
operand allowed)

¢ Sample COde .a = (b+C) *d—e Prog¢essor
load b
add c

mul d \Av/

sub e

Accumulator

store a

 Attributes Men
> Simple design

> Short instructions

> Many load, store instructions

* Example: Early machines are DEC PDP-8, IBM 7090. Today
used in DSP Processors

Instructor: Muhammad Arif Butt, Ph.D. 6

. Both operands are registers. Values in memory must be loaded into a register and
stored back (Maximum number of operands allowed are three)
 Sample Code:a = (b+c)*d-e

load rl, b Processor
load r2, c
add r3, rl, r2
load rl1l, d
mul r4, rl, r3
load rl1, e
sub r5, r4, rl
store r5, a

e Attributes Memory

> Allows fast access to temporary values

> Reduced traffic to memory

> Simple fixed length instructions encoding

> Higher instruction count, and many load, store instructious
Example: PDP-11, CRAY-1, MIPS, PowerPC, SPARC (RISC Arch)

e]
Instructor: Muhammad Arif Butt, Ph.D. /

‘&) Register-Memory Machine

* There i1s no implicit operand, one input operand 1s in register and other 1s in
memory. (Maximum number of operands allowed are three)

 Sample Code:a = (b+c)*d-e
load rl, b Prog
add r3 rl, c

mul r4, r3, d

sub r5, r4, e

store r5, a
e Attributes

» Small instruction count

Men

> Instruction length varies

> Clock per instruction varies

> Harder to pipeline
* Example: IBM 360/370, Motorola 68000, VAX, 8086

Instructor: Muhammad Arif Butt, Ph.D. 8

2. Types & Sizes of

Operands

Instructor: Muhammad Arif Butt, Ph.D.

& _Types and Sizes of Operands

How is the type of the operand designated?

* The type of the operand is usually encoded in the opcode —e.g.,
 LDB-load byte
 LDW-load word
* Common operand types: (imply their sizes)
* Character (8 bits or 1 byte)
* Half word (16 bits or 2 bytes)
Word (32 bits or 4 bytes)
Double word (64 bits or 8 bytes)
* Single precision floating point (4 bytes or 1 word)

Double precision floating point (8 bytes or 2 words)

Instructor: Muhammad Arif Butt, Ph.D. 10

Registers

* The smallest amount of memory that actually resides inside the CPU 1s called

Registers. Every CPU typically contains a few, easily accessed registers built from
the fastest technology available. Their number and functions are a central part of the

machine language

« Two most important registers that every architecture have are Instruction Pointer and

Instruction Register

» Program Counter / Instruction Pointer: This register stores the
address of the next instruction to be executed by the CPU

0000000000001001

> Instruction Register: This register 1s used to contain and later
decode the mstruction to be executed by the CPU

00100010 0011 0010

CPU

ALU

~

Registers

]
]

]

Instructor: Muhammad Arif Butt, Ph.D.

11

Registers (cont...)

o Other than PC and IP, there are many other registers that are used to store data and
memory addresses. They are accessible to assembly language programmers and
their number vary from architecture to architecture

Data Registers: There are various data registers, which are used to
store temporary data during any ongoing operations. Their contents
can be accessed by the assembly programmer

Before After
add R1, R2 R1: (2 R1: [
R2: 23 R2: 23

124
Address Registers: These registers are used to hold the address of 1os
the location to be accessed from memory 35 1y

store @A, R2 A: | 126 / 127
R2:

35 128

Instructor: Muhammad Arif Butt, Ph.D. =

3. Operations

Instructor: Muhammad Arif Butt, Ph.D. 3

Machine Operations

* Usually correspond to the operations that the hardware 1s designed to
support

* Most computers generally provide full set of operations for the first three
categories, 1.e., arithmetic/logical, data transfer and control

Operator Type

Integer arithmetic and logical operations: add,

Arithmetic and Logical subtract, multiply, divide, and, or, not.

Data Transfer Move instructions with memory addressing

Control Branch, jump, procedure call, return, trap
Synchronization, memory management

System > : ’ vy &
structions

Floating Point Add, subtract, multiply, divide, compare

String String move, string compare, string search

: Pixel and vertex operations, compression and
Graphics p ’ P

decompression operation

Instructor: Muhammad Arif Butt, Ph.D. 4

Machine Operations (cont...)

. The basic operations that we are interested right now are:

» Arithmetic Operations: add, subtract,
ADD R2, R1, R3. //R2<--RI+R3 where R1, R2, R3 are registers

ADD R2,R1, foo //R2 <--RI + foo where foo stands for the value of the memory
location pointed at by the user-defined label foo

» Logical Operations: and, not, or, ...
AND R1,R1,R2 //R1 <-- Bitwise AND of R1 and R2

» Flow Control: Flow control instructions change the flow of control, i.c.,
instead of executing the next instruction, the program branches to the
address specified in the branching instructions. Four types of control
instructions are conditional branches, unconditional branches, procedure
calls and procedure returns

goto 200 //shift the flow of control to instruction at address 200

if cond goto 200 //if true shift the flow of control to instruction at addr 200
|

Instructor: Muhammad Arif Butt, Ph.D. 1o

4. Memory Addressing Models
&

Addressing Modes

Instructor: Muhammad Arif Butt, Ph.D. 16

) Computer System

Computer System

Memory
(~ @ | 0101110011100110
1| 1011000101010100
2 | 1110001011111100

Program < L

X (" n | 1100101010010101

n+1 1100100101100111
n+2 0011001010101011

Data < '

CPU

current
instruction

—
—

ALU

output

registers

Instructor: Muhammad Arif Butt, Ph.D.

17

‘& Linear/Flat Memory Model

* A linear memory model, also known as the flat memory model
refers to a memory addressing technique in which memory is
organized 1n a single, sequential and contiguous address space

* In 1974, Intel introduced its 8-bit Intel-8080 CPU with an address bus of 16
bits. The designers of Intel 8080 processor used the linear memory model to

access memory and the processor could access a total memory of 64K
locations using the 16 lines of the address bus

* The addressing was simple, you put a 16-bit address on the address bus and
you get back the 8-bit value that was stored at that address

It is important to note that there 1s no necessary relation between the number
of address lines in a memory system and the size of the data stored at each
location. The 8080 stored 8 bits at each location, but it could have stored 16,
32, or even 64 bits at each location, and still have 16 memory address lines

Instructor: Muhammad Arif Butt, Ph.D. 18

&) Segmented Memory Model

A segmented memory model divides the system memory into groups of
independent segments referenced by pointers located in the special CPU registers
called segment registers

In 1978 Intel introduced its 16-bit Intel-8086 CPU with an address bus of 20 bits,
1.e., with a maximum memory support of IMB

Intel wanted to port all assembly programs running on 8080 to run on 8086 as well,
that could address 16 times as much memory as 8080. To get the best of both worlds
they introduced the segmented memory model in 8086

To make this porting possible, Intel set up the 8086 so that a program could take
some 64KB segment within the one megabyte of memory and run entirely inside it.
This was done by the use of segment registers (CS, DS, SS, ES), which are
basically memory pointers located in CPU registers indicating where, within the
8086’s megabyte of memory a complete program ported from 8080 would begin

Another logical argument in favor of a segmented memory model was that every
program has three logical parts, the code, the data, and the program stack. These
three logical parts of a program should appear as three distinct units in memory, but
making this division is not possible in the linear memory model. The segmented

memory model does allow this distinction as well

Instructor: Muhammad Arif Butt, Ph.D. o

Addressing Modes

In assembly language programming, the term addressing modes refers to
the way in which the operand of an instruction is specified. Different
architectures support different addressing modes

When an instruction requires two operands, the first operand 1s generally
the destination, which contains data in a register or memory location and
the second operand i1s the source. Generally, the source data remains
unaltered after the operation

The four basic modes of addressing are:
> Register addressing mode
» Immediate Addressing mode
» Direct / Absolute addressing mode
> Register Indirect addressing mode

Instructor: Muhammad Arif Butt, Ph.D. 20

RI = 400, R2=50, R3=27, R4=60, R5=500

348
Register: In register addressing mode, both the operands are placed in general 349
purpose registers, and the register codes are specified in the instruction 350

add R1, R2 //R1 < RI1+R2

308
Immediate: In this mode, one operand is in register and other is part of the 399

instruction as a constant. Its limitation is that the range of constant/operand is 400
restricted by available bits in the instruction

499

add R3, 54 //R3 < R3+ 54

500

Direct/Absolute: In this addressing mode, one operand is in register and the
other is in memory, whose effective address is part of the instruction 750

add R4, M[750] /R4 €& M[750] + R4

800

Register InDirect: In this addressing mode, one operand is in register and other
is in the memory, whose address is placed in a register, which is specified in the instr.

1000
1001

add R2, @R5 //R2 < M[R5] + R2

&) Addressing Modes Example

200

250

60

350

450

700

500

800

50

300

65

99

Instructor: Muhammad Arif Butt, Ph.D.

21

Addressing the 1/O Devices

* The way a microprocessor need to read/write different memory locations,
similarly the microprocessor also need to read/write different I/O devices
like the keyboard, mouse, monitor, printer, etc. This linking is also be
called I/O Interfacing. An I/O interface acts as a communication channel
between the processor and the externally interfaced device. The interfacing
of the I/O devices can be done in two ways

* Memory Mapped I/0 Interfacing: Both memory and I/O devices have
same address space. So addressing capability of memory become less
because some part 1s occupied by the I/O. In memory mapped I/0O, there
are same read-write instructions for memory and I/O devices, so CPUs
are cheaper, faster and easier to build

* Isolated 1/0O Interfacing: The I/O devices are given a separate
addressing region (separate from the memory). These separate address
spaces are known as ‘Ports’. In 1solated I/O, there are different read-

write instructions for memory and I/O devices. x86-64 use Isolated 1/0

Note: Data can be transferred between CPU and I/O devices in three modes, namely Program
controlled I/O, Interrupt initiated I/O, and Direct Memory Access

Instructor: Muhammad Arif Butt, Ph.D. 22

5. Encoding of ISA

Instructor: Muhammad Arif Butt, Ph.D. 23

=) Encoding of ISA

« What is the size of an instructions
* Fixed length

* Variable length

* How to encode the operations?

* How to encode the operands?
* How to encode the addressing modes?

* How to manage the flow control mechanism?

Instructor: Muhammad Arif Butt, Ph.D. 24

Real World ISAs

Architecture Type # Opr Data Size Registers Addr Size Use
x86 Reg-Mem 2 8/16/32/64 4/824 16/32/64 Lcrsonal
Computers
Cell phones,
ARM Reg-Reg 3 32/64 16 32/64 embedded
Work station,
MIPS Reg-Reg 3 32/64 32 32/64 embedded
Alpha Reg-Reg 3 64 32 64 Work station
Work station,
SPARC Reg-Reg 3 32/64 24-32 32/64 embedded
IBM360 Reg-Mem 2 32 16 24/31/64 Main frame
VAX Mem-Mem 3 32 16 32 Mini Computer

Instructor: Muhammad Arif Butt, Ph.D. 25

0.k., and nowyou'll do
exactly what I'm telling you !

Coming to office hours does NOT mean you are academically week!

Instructor: Muhammad Arif Butt, Ph.D. 26

