
Lecture # 18
Interfacing I/O Devices

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

• How to interface I/O devices with computer
• Interfacing Screen with Hack computer
– Demo of built-in Screen chip on h/w Simulator

• Interfacing Keyboard with Hack computer
– Demo of built-in Keyboard chip on h/w Simulator

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Input / Output

Instructor: Muhammad Arif Butt, Ph.D.

data

RAMROM

instruc-
tions

CPU

Keyboard: used to
get data from user

Screen: used to
display outputs

I/O Handling
• High Level Approach: Sophisticated software library functions are

used to display text/graphics on the monitor, read the keyboard,
read voice notes from mic and play the audio on speakers etc

• Low Level: Bits Manipulation

4Instructor: Muhammad Arif Butt, Ph.D.

• The way a microprocessor need to read/write different memory locations,
similarly the microprocessor also need to read/write different I/O devices
like the keyboard, mouse, monitor, printer, etc. This linking is also be
called I/O Interfacing. An I/O interface acts as a communication channel
between the processor and the externally interfaced device. The interfacing
of the I/O devices can be done in two ways
• Memory Mapped I/O Interfacing: Both memory and I/O devices have

same address space. So addressing capability of memory become less
because some part is occupied by the I/O. In memory mapped I/O, there
are same read-write instructions for memory and I/O devices, so CPUs
are cheaper, faster and easier to build

• Isolated I/O Interfacing: The I/O devices are given a separate
addressing region (separate from the memory). These separate address
spaces are known as ‘Ports’. In isolated I/O, there are different read-
write instructions for memory and I/O devices. x86-64 use Isolated I/O

Note: Data can be transferred between CPU and I/O devices in three modes, namely Program
controlled I/O, Interrupt initiated I/O, and Direct Memory Access

Interfacing I/O Devices with a Computer

5

Interfacing Screen with
Hack Computer

Instructor: Muhammad Arif Butt, Ph.D.

6

Memory Mapped Output

Instructor: Muhammad Arif Butt, Ph.D.

data

RAM
instructions

ROM screen
memory

map

Screen Memory Map:
• Screen memory map is a designated memory area, dedicated to manage a display unit
• To write something on the display unit, write some bits in the designated memory area

(zero to make a pixel off/white and one to make a pixel on/black)
• The physical display is continuously refreshed from the contents of memory map,

many times per second
• Whatever, we write in the memory map makes the corresponding pixels of screen

black and white in the next refresh cycle
• This is how we can write “Hello World” message on the screen

CPU

RAM

7

Screen Memory Map

Instructor: Muhammad Arif Butt, Ph.D.

8Instructor: Muhammad Arif Butt, Ph.D.

To set pixel (row,col) on/off
word = Screen[32*row + col/16]
word = RAM[16384 + 32*row + col/16]
Set (col%16)th bit of word to 0 or 1
RAM[i] = word

0
1

255

�
�
�

0 1 2 3 4 5 6 7 � � � 511

� � �

� � �

� � �

Black & White Display Unit
• A matrix of 256 rows x 512 columns
• 131072 pixels

Screen Memory Map

row 0

row 1

1111010100000000
0000000000000000

�
�
�

0011000000000001
0000101000000000
0000000000000000

�
�
�

0000000000000000

�
�
�

0000000000000000
1011010100000000

�
�
�

0000000100000000

63

8159
8160

31
32
33

8191
(8K)

Memory Map
Screen (chip)

0
1

row 255

A sequence of 8K x 16 bit words
8192 words
131072 bits

refresh

16 x 32 = 512

(16384)

(255,7)

9

Output

Instructor: Muhammad Arif Butt, Ph.D.

data
memory

(16K)

screen
memory map

8k

0

24,576

16,384

Hack RAM

base address of the
screen memory map

• The physical screen is of 256 rows and 512 columns which makes 256 x 512 = 131072 pixels
• To map each pixel of screen on a single bit, the Screen memory map must contain 8K, 16 bits

words, which makes 8192 x 16 = 131072 bits

10Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Screen Chip
builtinChips/Screen.hdl

Screen Output Demo

11

Interfacing Keyboard with
Hack Computer

Instructor: Muhammad Arif Butt, Ph.D.

12

Memory Mapped Input

Instructor: Muhammad Arif Butt, Ph.D.

data

RAM

instructions

ROM

KBD MM

Keyboard Memory Map:
• The physical keyboard is associated with a keyboard memory map,

which is a designated RAM area, dedicated to manage the key board
• The physical screen was of 256 rows and 512 columns and the

Screen memory map was of 131072 bits
• The Hack character set we need are less than 256, so for the

keyboard we just need 16 bits, so the keyboard memory map is a
single register at RAM address 24576

CPU

24576

13

The Hacker Character Set

Instructor: Muhammad Arif Butt, Ph.D.

key code

(space) 32

! 33

“ 34

35

$ 36

% 37

& 38

‘ 39

(40

) 41

* 42

+ 43

, 44

- 45

. 46

/ 47

key code

0 48

1 49

… …

9 57

: 58

; 59

< 60

= 61

> 62

? 63

@ 64

key code

A 65

B 66

C …

… …

Z 90

[91

/ 92

] 93

^ 94

_ 95

` 96

key code

a 97

b 98

c 99

… …

z 122

key code

newline 128

backspace 129

left arrow 130

up arrow 131

right arrow 132

down arrow 133

home 134

end 135

Pageup 136

Pagedown 137

insert 138

delete 139

esc 140

f1 141

… …

f12 152

{ 123

| 124

} 125

~ 126

14

Memory Mapped Input

Instructor: Muhammad Arif Butt, Ph.D.

0000000000000000
Keyboard

When a key is pressed on the keyboard, the key’s scan code appears in the keyboard
memory map. Since no key is being pressed on the keyboard in this figure, so the
keyboard memory map contains all zeros

To check which key is currently pressed:

• Probe the contents of the Keyboardchip

• In the Hack computer: probe the contents of RAM[24576]

15

Memory Mapped Input

Instructor: Muhammad Arif Butt, Ph.D.

Keyboard
k

Scan-code of ‘ k ’ = 75

00000000000000000000000001001011000000000011010000000000001000000000000010000011

When a key is pressed on the keyboard, the key’s scan code appears in the keyboard
memory map

To check which key is currently pressed:

• Probe the contents of the Keyboardchip

• In the Hack computer: probe the contents of RAM[24576]

16

Memory Mapped Input

Instructor: Muhammad Arif Butt, Ph.D.

0000000000110100
Keyboard

Scan-code of ‘ 4 ’ = 52

4

When a key is pressed on the keyboard, the key’s scan code appears in the keyboard
memory map

To check which key is currently pressed:

• Probe the contents of the Keyboardchip

• In the Hack computer: probe the contents of RAM[24576]

17Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Keyboard Chip
builtinChips/Keyboard.hdl

Keyboard Input Demo

18

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

