
Lecture # 20
Hack Assembly Programming - II

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

• Recap of Previous Lecture
• Symbols in Hack Assembly Language
– Built-in Symbols
– Label Symbols
– Variable Symbols

• Branching
• Iteration

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Recap: CPU Emulator

Instructor: Muhammad Arif Butt, Ph.D.

CPU Emulator
• A software tool build in Java
• We can load Hack assembly program into

CPU emulator’s instruction memory, the CPU
emulator translate it into machine language
and execute it

• Convenient for debugging and executing
symbolic Hack programs in simulation

// Program: addv2.asm
// Computes: RAM[2] = RAM[0] + RAM[1]
// Usage: put values in RAM[0], RAM[1]

Hack assembly code

4 @2
5 M=D // RAM[2] = D

0 @0
1 D=M // D = RAM[0]

2 @1
3 D=D+M // D = D + RAM[1]

6 @6
7 0;JMP

Load

4

Symbols in Hack
Assembly Language

Instructor: Muhammad Arif Butt, Ph.D.

5

Symbols in Hack Assembly Language

Instructor: Muhammad Arif Butt, Ph.D.

• Assembly Instructions can refer to memory locations (addresses)
using either constants or symbols. Symbols are introduced into
Hack assembly programs in the following three ways:

• Predefined/build-in Symbols: These are a special subset of RAM
addresses that can be referred to by any assembly program using
virtual registers, predefined pointers and I/O pointers

• Label Symbols: These are user defined symbols, which serve to
label destinations of goto commands

• Variable Symbols: These are also user defined symbols which are
assigned unique memory addresses starting at RAM addresses 16
onwards

6

Pre-Defined / Built-in
Symbols

Instructor: Muhammad Arif Butt, Ph.D.

7

Built-in Symbols: Virtual Registers

Instructor: Muhammad Arif Butt, Ph.D.

To simplify assembly programming, the symbols R0 to R15 are predefined
to refer to RAM addresses 0 to 15 respectively

These symbols can be used to denote “virtual registers”

Example: Suppose a programmer wants to write a constant value 7 at RAM[5]

// let RAM[5] = 7
@7
D=A
@5
M=D

Implementation:

symbol value
R0 0
R1 1 Attention: Hack is case-sensitive!
R2

...
2 R5 and r5 are different symbols.

...
R15 15

// let RAM[5] = 7
@7
D=A
@R5
M=D

Better Style:

8Instructor: Muhammad Arif Butt, Ph.D.

symbol value
SP 0

LCL 1
ARG 2
THIS 3
THAT 4

Built-in Symbols: Predefined Pointers
• The following five symbols are predefined to refer to RAM
addresses 0 to 4 respectively

• Note that RAM addresses from 0 to 4 has two labels. For example,
address 2 can be referred to using either R2 or ARG

• These symbols will come into play in the implementation of the
virtual machine, which will not be used in this part of the course

9Instructor: Muhammad Arif Butt, Ph.D.

symbol value
SCREEN 16384

KBD 24576

Built-in Symbols: I/O Pointers
• The following two symbols SCREEN and KBD are predefined to
refer to RAM addresses 16384 (0x4000) and 24576 (0x6000)
respectively

• These are the base addresses of the screen and keyboard memory
maps (discussed in detail in Lecture # 18)

• These symbols will come into play, when we will write assembly
programs that deals with the screen and keyboard in the next lecture

10

Branching

Instructor: Muhammad Arif Butt, Ph.D.

11

Branching

Instructor: Muhammad Arif Butt, Ph.D.

• Branching is the fundamental ability to tell the computer to evaluate
certain Boolean expression and based on the result, decide whether
or not the flow of execution should continue the next instruction in
sequence or jump to some other location in the code

• All programming languages support various branching mechanisms
like if…else, while…, for…, and so on

• In machine language we have only one branching mechanism called
goto

12

Branching Example

Instructor: Muhammad Arif Butt, Ph.D.

// Program: ifelsev1.asm
// Computes: if R0 > 0

R1 = 1
else

R1 = 0
// Usage: put a value in RAM[0], run and inspect RAM[1]

0 @R0
1 D=M //D = RAM[0]

2 @8
3 D;JGT // If R0>0 goto 8

4 @R1
5 M=0
6 @10
7 0;JMP

8 @R1
9 M=1

10 @10
11 0;JMP

13

Branching Example (cont…)

Instructor: Muhammad Arif Butt, Ph.D.

@R0
D=M

@8
D;JGT

@R1
M=0
@10
0;JMP

@R1
M=1

@10
0;JMP

cryptic code

• If we remove all the
comments as well as the line
numbers, the code become
quite unreadable or cryptic

• It is of course really difficult
to understand what this code
actually do

• Yet the code will work
perfectly fine as expected by
the programmer

14

Branching Example (cont…)

Instructor: Muhammad Arif Butt, Ph.D.

@R0
D=M

@8
D;JGT

@R1
M=0
@10
0;JMP

@R1
M=1

@10
0;JMP

cryptic code

“Instead of imagining that our
main task as programmers is to
instruct a computer what to do,
let us concentrate rather on
explaining to human beings
(fellow programmers) what we
intend a computer to do.”
– Donald Knuth

Important
If our programs are not self documented, we will not be able to fix and extend them

15

Use of Labels

Instructor: Muhammad Arif Butt, Ph.D.

16Instructor: Muhammad Arif Butt, Ph.D.

// Program: ifelsev1.asm
// Computes: if R0 > 0

R1 = 1
else

R1 = 0
// Usage: put a value in RAM[0], run and inspect RAM[1]

0 @R0
1 D=M //D = RAM[0]

2 @8
3 D;JGT // If R0>0 goto 8

4 @R1
5 M=0
6 @10
7 0;JMP

8 @R1
9 M=1

10 @10
11 0;JMP

Branching Example: Understanding Labels

17

Branching Example: Understanding Labels

Instructor: Muhammad Arif Butt, Ph.D.

// Program: ifelsev2.asm
// Computes: if R0 > 0

R1 = 1
else

R1 = 0
// Usage: put a value in RAM[0], run and inspect RAM[1]

0 @R0
1 D=M //D = RAM[0]

2 @POSITIVE //@8
3 D;JGT // If R0>0 goto 8

4 @R1
5 M=0
6 @10
7 0;JMP

(POSITIVE)
8 @R1
9 M=1

10 @10
11 0;JMP

• These are user-defined symbols, which
serve to label destinations of goto
commands

• Declared by (xxx) directive
• So @xxx refer to the instruction number

following the declaration
• A label can be declared only once and can

be referred to any number of times and
any-where in the assembly program, even
before the line in which it is declared

• The name of a user defined symbol can be
any sequence of alphabets, digits,
underscore, dot, dollar sign and a colon.
However, the name must not begin with a
digit

• The naming convention is to use
uppercase alphabets for labels and lower
case alphabets for variables

declaring
a label

Referring
to a label

18

Branching Example : Understanding Labels

Instructor: Muhammad Arif Butt, Ph.D.

// Program: ifelsev2.asm
// Computes: if R0 > 0

R1 = 1
else

R1 = 0
// Usage: put a value in RAM[0], run and inspect RAM[1]

0 @R0
1 D=M //D = RAM[0]

2 @POSITIVE //@8
3 D;JGT // If R0>0 goto 8

4 @R1
5 M=0
6 @END //@10
7 0;JMP

(POSITIVE)
8 @R1
9 M=1

(END)
10 @END //@10
11 0;JMP

declaring
a label

Referring
to a label

Referring
to a label

• These are user-defined symbols, which
serve to label destinations of goto
commands

• Declared by (xxx) directive
• So @xxx refer to the instruction number

following the declaration
• A label can be declared only once and can

be referred to any number of times and
any-where in the assembly program, even
before the line in which it is declared

• The name of a user defined symbol can be
any sequence of alphabets, digits,
underscore, dot, dollar sign and a colon.
However, the name must not begin with a
digit

• The naming convention is to use
uppercase alphabets for labels and lower
case alphabets for variables

19

Branching Example : Resolving Labels

Instructor: Muhammad Arif Butt, Ph.D.

// Program: ifelsev2.asm
// Computes: if R0 > 0

R1 = 1
else

R1 = 0
// Usage: put a value in RAM[0], run and inspect RAM[1]

0 @R0
1 D=M //D = RAM[0]

2 @POSITIVE //@8
3 D;JGT // If R0>0 goto 8

4 @R1
5 M=0
6 @END //@10
7 0;JMP

(POSITIVE)
8 @R1
9 M=1

(END)
10 @END //@10
11 0;JMP

Label resolution rules:

• Label declarations
are not translated, are
ignored, so generate
no code and are
called pseudo-
commands

• Each reference to a
label is translated, i.e.,
replaced with a
reference to the
instruction number
following that label’s
declaration

32767

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

@0
D=M
@8 // @POSITIVE

D;JGT
@1
M=0
@10 // @END

0;JMP
@1
M=1
@10 // @END

0;JMP

resolving
labels

ROM

20Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

19/ifelsev2.asm

Running an Assembly Program in CPU Emulator

21

Use of Variables

Instructor: Muhammad Arif Butt, Ph.D.

22

Variables

Instructor: Muhammad Arif Butt, Ph.D.

• Variable is an abstraction of a container, that has a name and a value
• You can say that it is a named memory location
• In high level languages we also have a type associated with a
variable, but in Hack machine/assembly language, we have only 16
bit values of a variable

• So in Hack assembly language, a variable is user-defined symbol
xxx appearing in the program that is not predefined and is not
defined elsewhere using the (xxx) directive. It is assigned a unique
memory address by the assembler, starting at RAM address 16
(0x0010)

23

Variables: Example

Instructor: Muhammad Arif Butt, Ph.D.

//Program: swap.asm
//flips the values of RAM[0] and RAM[1]
//temp = R1
// R1 = R0
//R0 = temp
// temp = R1
@R1
D=M
@temp
M=D
// R1 = R0
@R0
D=M
@R1
M=D
// R0 = temp
@temp
D=M
@R0
M=D
(END)
@END
0;JMP

symbol used for
the first time

symbol used again

@temp:
• Since this is the first occurrence of the

symbol temp, not declared as a label
elsewhere using (temp), so this
qualifies it to be a variable

• The assembler will map it to some
available memory register, starting at
RAM address 16 (0x0010)

• So from this point onwards, each
occurrence of @temp in the program
will be translated into @16

24

Example: Resolving Variables

Instructor: Muhammad Arif Butt, Ph.D.

//Program: swap.asm
//flips the values of RAM[0] and RAM[1]
//temp = R1
// R1 = R0
//R0 = temp
@R1
D=M
@temp
M=D // temp = R1
@R0

D=M
@R1
M=D // R1 = R0
@temp

D=M
@R0
M=D // R0 = temp

(END)
@END
0;JMP

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

@1
D=M
@16 // @temp
M=D
@0
D=M
@1
M=D
@16 // @temp
D=M
@0
M=D
@12
0;JMP

ROMresolving
symbols

Symbol resolution rules:
• A reference to a symbol

that has no corresponding
label declaration is treated
as a reference to a variable

• Variables are allocated to
the RAM from address
16 onward (say n), and
the generated code is
@n

• Here we have only one
variable, so that is
allocated RAM address 16.
If there are more they will
be allocated address 17,
18, and so on

In other words: variables are
allocated to RAM[16] onward.

32767

Symbolic
variable

Symbolic
label

25Instructor: Muhammad Arif Butt, Ph.D.

//Program: swap.asm
//flips the values of RAM[0] and RAM[1]
//temp = R1
// R1 = R0
//R0 = temp
@R1
D=M
@temp
M=D // temp = R1
@R0

D=M
@R1
M=D // R1 = R0
@temp

D=M
@R0
M=D // R0 = temp

(END)
@END
0;JMP

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

@1
D=M
@16 // @temp
M=D
@0
D=M
@1
M=D
@16 // @temp
D=M
@0
M=D
@12
0;JMP

ROMresolving
symbols

32767

Symbolic code is easy
to read and debug

Implications:

Symbolic
variable

Symbolic
label

The program has become Relocatable Code:
• You can take this program and load it into memory, not

necessarily to address zero, as long as you remember the
base address of memory where this program is loaded

• This is very important when several such programs are
loaded and running inside the memory

Implications of Using Symbols

26Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

19/swap.asm

Running an Assembly Program in CPU Emulator

27

Iteration

Instructor: Muhammad Arif Butt, Ph.D.

28

Interactive Processing Example

Instructor: Muhammad Arif Butt, Ph.D.

Pseudo
Code:

// Computes RAM[1] = 1 + 2 + 3 … + n
n = R0
i = 1
sum = 0

LOOP:
if i > n goto STOP
sum = sum + i
i = i + 1
goto LOOP

STOP:
R1 = sum

// Computes RAM[1] = 1 + 2 + 3 … + n
// Computes RAM[1] = 1+2+ ... +n
// Usage: put a number (n) in RAM[0]
@R0
D=M
@n
M=D // n = R0
@i
M=1 //i = 1
@sum
M=0 //sum = 0

. . . .

32767

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

@0
D=M
@16 // @n
M=D
@17 // @i
M=1
@18 // @sum
M=0
...

Assembly
Code:

Variables are
allocated to
consecutive RAM
locations from
address 16
onwards

ROM

29

Interactive Processing Example

Instructor: Muhammad Arif Butt, Ph.D.

// Computes RAM[1] = 1 + 2 + 3 … + n
n = R0
i = 1
sum = 0

LOOP:
if i > n goto STOP
sum = sum + i
i = i + 1
goto LOOP

STOP:
R1 = sum

// Computes RAM[1] = 1 + 2 + 3 … + n
// Computes RAM[1] = 1+2+ ... +n
// Usage: put a number (n) in RAM[0]
@R0
D=M
@n
M=D // n = R0
@i
M=1 //i = 1
@sum
M=0 //sum = 0

(LOOP)
@i
D=M
@n
D=D-M
@STOP
D;JGT //if i > n goto STOP
@sum
D=M
@i
D=D+M
@sum
M=D // sum = sum + i
@i
M=M+1 // i = i + 1
@LOOP
0;JMP

(STOP)
@sum
D=M
@R1
M=D // RAM[1] = sum

(END)
@END
0;JMP

30

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

• You all must have a very clear understanding of
built-in symbols, labels, variables, branching and
iteration

• Download all the assembly program from the
course bitbucket repository, make changes to
them and execute them in the CPU Emulator

• Run the programs, one instruction at a time, do
the working in your head or on a piece of paper,
while executing the programs one instruction at a
time

• Interested students should try to write down max.asm program that
computes the maximum out of two numbers

