ese Ol oS
A \

\
o notb aAnﬁNotb
\/ \
/K ::li}7<mt
niota /

notaAndb
!

\
And
bq

Memory

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb) ;
And (a=nota, b=b, out=wl)
And (a=a, b=notb, out=w2)
Or (a=wl, b=w2, out=out);

program

* den

Memory.
address
input

’

’

Lecture # 11

Design of Registers

#include<stdio.h>
#include<stdlib.h>
int main () {

printf ("Learning is fun with Arif\n");

exit (0) ;
}

—>

Slides of first half of the course are adapted from:
https://www.nand2tetris.org

global main
SECTION .data

msg: db "Learning is fun with Arif", O0Ah, Oh

len msg: equ $ - msg
SECTION .text

main:
mov rax,l
mov rdi, 1l
mov rsi,msg
mov rdx,len msg
syscall
mov rax, 60
mov rdi, 0
syscall

Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6 XpZUh3X2dPR 100MUE/view

instruction

Instructor: Muhammad Arif Butt, Ph.D.

ALU

@R1
D=l

@temp
M=D

—

0000000000000001
1111110000010000
0000000000010000
1110001100001000

11:
14:
19:
1b:
20:
25:

b8 01 00 00 00

bf 01 00 00 00

48 be 00 00 00 00 00
00 00 00

ba 1b 00 00 00

0f 05

b8 3c 00 00 00

bf 00 00 00 00

0f 05

Today’s Agenda

Review of Sequential Chips

What are Registers
Design of 1-bit Register &
HDL for 1-bit Register l@-v; 3

Design of 16-bit Register s
HDL for 16-bit Register \Qd

Instructor: Muhammad Arif Butt, Ph.D. 2

Review of Seguentlal ChlES

state(t) = £ (state(t-1), 1nput(t))

> DFF L
AN
input | combinational - Df\F ’ output R
g logic > — g
> DFF >
’ A J
___________________________________ AN

Sequential chips are capable of maintaining state, and, optlonally acting on the state, and on the
current input

The simplest and most elementary sequential chip is DFF, which maintain a state, i.e., the value
of the input from the previous time unit

Using DFF we can design registers, and using registers we can design RAM, whose state is the
current values of all its registers. Given an address, the RAM emits the value of the selected
register

All combinational chips are constructed from NAND gates, while all sequential chips are
constructed from DFF gates, and combinational chips

Instructor: Muhammad Arif Butt, Ph.D. 3

CPU Registers

Instructor: Muhammad Arif Butt, Ph.D.

CPU Registers

Computer System

Memory CPU
ALU
memo
intput m—)p Y | ——) output

A register 1s a small memory place inside the CPU that may hold data, memory address or
instruction

The size of registers in a 64-bit computer must be of 64 bits

In our Hack computer is a 16 bit computer, so the registers we are going to design will be of
16 bits

There are several different classes of CPU registers which works in coordination with the
computer memory to run operations efficiently. (More on it later)

Instructor: Muhammad Arif Butt, Ph.D. >

1-Bit Register

Instructor: Muhammad Arif Butt, Ph.D.

1-Bit Register API

load

!

in—»{ Bit |—» out

A single-bit register, which we call Bit, or binary cell, 1s designed to store a single
bit of information (0 or 1)

The chip interface diagram shows that it has two input pins and one output pin.
The mput pin carries a data bit, the load pin enables the cell for writes, and an
output pin that emits the current state of the cell

When you read the out pin of the binary cell, you will always get whatever 1s the
state of the binary cell

To write the binary cell, we set the load bit to 1, now what ever 1s there on the
mput bit will be stored inside the binary cell and will be available on the out pin in
the next clock cycle

When the load bit 1s zero, the chip keep remembering the last mput that was

loaded 1into 1t for infinity until a new load operation 1s performed
e

Instructor: Muhammad Arif Butt, Ph.D. /

‘&) Sequential Chips: 1-Bit Register

load Chip name: Bit
i Inputs: in, load
Outputs: out
in —» Bit [out Function: ITf load(t) then
out (t+1) = in(t)
else
out (t+1) = out(t)

* Goal: Remember an imput bit forever, until requested to load a new

value
* More accurately:
e Stores a bit until...
* Instructed to load, and store, another bit

Instructor: Muhammad Arif Butt, Ph.D.

2 Sequential Chips: 1-Bit Register

load Chip name: Bit
Inputs: in, load
i Outputs: out
Function: Tf load(t) then
in —» Bit [—» out out (t+1) = in(t)
else

out (t+1) = out (t)

Time 1 2 3 4 5
§ 338 [33
Load
0
. 1
in

N A
’ N\

Instructor: Muhammad Arif Butt, Ph.D. J

out

1-Bit Register Implementation

in » DFF » out

Instructor: Muhammad Arif Butt, Ph.D. 10

Instructor: Muhammad Arif Butt, Ph.D. H

1-Bit Register Implementation
o load
|

in
out

DFF \(>

time: 1 2 3 4 5

load: 1
(example) 0

in:

(example) (%]

1
out:

%)

Instructor: Muhammad Arif Butt, Ph.D. =

=) 1-Bit Register Implementation

load
? out
DFF T > 1
) 4 3\
time: 1 2 3 4 5
load: 1
(example) 0
in:
(example) ©
1
out:
(7]
—

Instructor: Muhammad Arif Butt, Ph.D. 3

1-Bit Register Implementation

load
? out
DFF I » 1
) (A
time: 1 2 3 4 5
load: 1
(example)
in:
(example) (%]
1
out:
0
—

Instructor: Muhammad Arif Butt, Ph.D. 14

1-Bit Register Implementation

load
|
in (%) °
— 1 1 out
1 DFF I » 1
) 4 3
time: 1 2 3 4 5
load: 1
(example)
in:
(example) (%]
1
out:
0
N

Instructor: Muhammad Arif Butt, Ph.D. =

1-Bit Register Implementation

load
|
in 0 °
— 1 1 out
1 DFF I » 1
) 4)
time: 1 2 3 4 5
load: 1
(example)
in:
(example) (%]
1
out:
0
—

Instructor: Muhammad Arif Butt, Ph.D. 16

1-Bit Register Implementation

load
|
in 0 1
— (%) 1 out
1 DFF I » 1
) ()
time: 1 2 3 4 5
load: 1
(example)
in:
(example) (%]
1
out:
0
—

Instructor: Muhammad Arif Butt, Ph.D. v

& 1-Bit Register Implementation

load
|
in (5] °
0 0 out
0 DFF I » 0O
) (h
time: 1 2 3 4 5
load: 1
(example)
in:
(example) 0
1
out:
0
—

Instructor: Muhammad Arif Butt, Ph.D. 18

Computers Are Flexible

load
|
in 0 0
_ 0 0 out
0 DFF O » O
A T
time: 1 2 3 4 5
load: 1
(example) ()
in: Resulting behavior:
(example) O Stores and emits a
value, until instructed
. 1 to load (and store) a
out: 0 new value

Instructor: Muhammad Arif Butt, Ph.D. 9

‘@) HDL for 1-bit Register

load
|
in 0 0
_ 0 0 out
0 DFF O » 0
~ |
Bit.hdl
/** 1-bit register:
* Tf load[t] == 1 then. //load input in the ff
* out [t+1l] = in[t]
* else //out does not change
w5/ (out [t+1] = out[t])
CHIP Bit {
IN in, load;
OUT out;
PARTS:

Mux (a=sendBack, b=in, sel=load, out=MuxOut):;
DFF (in=MuxOut, out=sendBack, out=out);

Instructor: Muhammad Arif Butt, Ph.D. 20

1-Bit Register Demo

Instructor: Muhammad Arif Butt, Ph.D. 21

Multi-Bit Register

Instructor: Muhammad Arif Butt, Ph.D. 22

load load

l .

in out
—_— Bit —>» in %b Bit| | Bit| - - - | Bit
w

VAN A

(1-bit register) (multi-bit register)

of information

load

l

Register
N\

out

(multi-bit register)

A register is actually a group of flip-flops, each flip flop capable of storing one bit

An n-bit register consists of a group of n flip-flops capable of storing n bits of

binary information. In this course we will focus on designing of 16-bit registers for

our computer

A 16 bit register can be created from an array of 16 1-bit registers

Instructor: Muhammad Arif Butt, Ph.D.

23

16 Bit Register API

The API of the 16 bit Register chip is essentially the same as the 1-bit register,

except that the input and output pins are designed to handle multi-bit values

The interface diagram and API of a 16-bit register is shown below

The Bit and Register chips have exactly the same read/write behavior:

* Read: To read the contents of a register, we simply probe its output

* Write: To write a new data value d into a register, we put d in the in input and
set the load input to 1. In the next clock cycle, the register commits to the new
data value, and its output starts emitting d, and it will keep emitting this new

value forever till the time we decide to write a new value 1n it

load

l

—A > Register

VAN

out

Chip name: Register
Inputs: in[l6], 1load
Outputs: out[16]
Function: 1f load(t) then
out (t+1) = in(t)
else
out (t+1) = out (t)

Instructor: Muhammad Arif Butt, Ph.D.

24

HDL for 16-bit Register

load

in —<»[Bit|[Bit] - - - [Bit|—<» out

Register.hdl w A w
/ * %
* 16-bit register:
* If load[t] == 1 then out[t+1l] = in[t]
* else out does not chandge carp sit
*/ IN in, load;
OUT out;
CHIP Register { PARTS :
. Mux (a=sendBack, b=in, sel=load, out=MuxOut) ;
IN 1n [1 6] ’ load; DFF (in=MuxOut, out=sendBack, out=out) ;
OUT out[16]; :
PARTS:

Bit (in=1in[0], load=load, out=out[O0]
Bit (in=in[l], load=load, out=out[1l]
Bit (in=in[2], load=load, out=out[2]
Bit (in=in[3], load=load, out=out[3]

Bit (in=in[15], load=load, out=out[1l5]);

Instructor: Muhammad Arif Butt, Ph.D. 25

16-Bit Register Demo

Instructor: Muhammad Arif Butt, Ph.D. 26

* Practice writing HDL of the register chips and " ok, adnowyoutido
verify their behavior by loading and running them e g

on the h/w ssimulator. You can download the .hdl,

bitbucket repository:
https://bitbucket.org/arifpucit/coal-repo/

Practice the different timing diagrams that we have used to describe
the behavior of D-flip flop and the single bit register on a piece of
paper by yourself.

Coming to office hours does NOT mean you are academically week!

Instructor: Muhammad Arif Butt, Ph.D. 27

