ese Ol oS
A \

\
o notb aAnﬁNotb
\/ \
/K ::li}7<mt
niota /

notaAndb
!

\
And
bq

Memory

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb) ;
And (a=nota, b=b, out=wl)
And (a=a, b=notb, out=w2)
Or (a=wl, b=w2, out=out);

program

* den

Memory.
address
input

’

’

Lecture # 13

Design of Counters

#include<stdio.h>
#include<stdlib.h>
int main () {

printf ("Learning is fun with Arif\n");

exit (0) ;
}

—>

Slides of first half of the course are adapted from:
https://www.nand2tetris.org

global main
SECTION .data

msg: db "Learning is fun with Arif", O0Ah, Oh

len msg: equ $ - msg
SECTION .text

main:
mov rax,l
mov rdi, 1l
mov rsi,msg
mov rdx,len msg
syscall
mov rax, 60
mov rdi, 0
syscall

Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6 XpZUh3X2dPR 100MUE/view

instruction

Instructor: Muhammad Arif Butt, Ph.D.

ALU

@R1
D=l

@temp
M=D

—

0000000000000001
1111110000010000
0000000000010000
1110001100001000

11:
14:
19:
1b:
20:
25:

b8 01 00 00 00

bf 01 00 00 00

48 be 00 00 00 00 00
00 00 00

ba 1b 00 00 00

0f 05

b8 3c 00 00 00

bf 00 00 00 00

0f 05

Today’s Agenda

* Overview of Hack Computer Components

 QOverview of Counters

* Why do we need Counter for our Hack Computer

* Concept of Program Counter

* Counter Simulation
* Design and Implementation of PC for Hack Computer

e Demo on H/W Simulator

Instructor: Muhammad Arif Butt, Ph.D. 2

&) Hack Computer System

Computer System

CuU

registers

Instructor: Muhammad Arif Butt, Ph.D. 3

Counters

Instructor: Muhammad Arif Butt, Ph.D.

Overview of Counters

A counter is a special type of register that goes through a pre-determined sequence
of states upon the application of input pulses

* Counters are used for:
* Counting the number of occurrences of an event
* Keeping time or calculating amount of time between events
* Baud rate generation
* A w-bit counter consists of two main elements:
* A w-bit register to store a w-bit value
* A combinational logic to
* Compute the next value (according to a specific counting function)
* Load a new value of user/programmer choice
* Reset the counter to a default value
 Examples:

* Simple Up/Down Binary Counters
* BCD Counter(s)

* Gray Code Counter

* Ring Counter

e Johnson Counter
[|

Instructor: Muhammad Arif Butt, Ph.D. >

Why we Need Counter Chip for Hack CPU

Consider a counter chip designed to contain the address of the
instruction that the computer should fetch and execute next

In most cases, the counter has to simply increment itself by 1 in each
clock cycle, thus causing the computer to fetch the next istruction in
the program

In other cases, we may want the program to jump to an instruction at
memory address n, so the programmer want to set the counter to a
value of n, rather than its default counting behavior with n+1, n+2,
and so forth

Finally, the program’s execution can be restarted anytime by resetting
the counter to 0, assuming that the address of the program’s first
Instruction

In short, we need a loadable and resettable counter

Instructor: Muhammad Arif Butt, Ph.D. 6

‘&) Program Counter Register

. Every computer has a special register called the Program Counter,
normally called the PC, which keeps track of the instruction to be
fetched and executed next

The PC 1s designed to support three possible control operations:

 Reset: Fetch the first instruction PC =0

e Next: Fetch the next instruction PCtt

* Goto: Fetch instruction at address n | pc

Il
=]

Instructor: Muhammad Arif Butt, Ph.D. /

Counter Abstraction

load inc reset
in out
—A > PC -
16 16
VAN

if reset[t] = 1 then

PC =0
out[t+1] = 0
else 1if load[t] = 1 then
PC = in
out [t+1] = in[t]
else 1f inc[t] = 1 then
PC++
out[t+1l] = out[t] + 1

else out[t+1l] = out[t] //do nothing

e]
Instructor: Muhammad Arif Butt, Ph.D. 8

inc

!

load

!

reset

!

w bits

PC (counter)

A

out . 47 . 47 @

reset

P

+> out

w bits

@ :

©V0O0LYLEY

load

inc

in§5

cycle

527

527

27 | 527 | 527 | 527 | 527 |
' _ : : — : 6
22 @ 24 @ 26

| 527

| 527

527

527 |

527

527 !

o o ~0 o o o 0 o >
27 2830 31 32'@'34

clock

A

A

A

A

N

A

A

A

4

A

4

A

A

A\

A

A

A

A

N

A

A

Instructor: Muhammad Arif Butt, Ph.D.

!

16 Bit Program Counter Implementation

load inc reset
in out
—~ > PC —F
16 16
AN

CHIP Register ({

IN in[16], load;

OUT out[1l6];
PARTS:

Bit(in=in[0],

Bit(in=in[1],

Bit(in=in[2],

load=load,
load=load,
load=load,

out=out[0]) ;
out=out[1l]) ; }
out=out[2]) ;

CHIP Incl6 {

IN in[l6];
OUT out[1l6];
PARTS:

Addl6 (a=in, b[0]=true, out=out) ;

Bit(in=in[3], load=load, out=out[3]) ;

Bit(in=in[15], load=load, out=out[15]) ;

CHIP Bit {
IN in, load;
OUT out;
PARTS:
Mux (a=sendBack, b=in, sel=load, out=MuxOut) ;
DFF (in=MuxOut, out=sendBack, out=out) ;

CHIP Addlé {

IN a[l16], b[16];
OUT out[16];
PARTS:
HalfAdder (a=a[0], b=b[0],
FullAdder(a=a[l], b=b[1],
FullAdder (a=a[2], b=b[2],

sum=out[0], carry=carryO) ;

c=carry0, sum=out[l], carry=carryl) ;
c=carryl, sum=out[2], carry=carry?2);
FullAdder (a=a[3], b=b[3], c=carry2, sum=out[3], carry=carry3)

FullAdder (a=a[14], b=b[14], c=carryl3, sum=out[1l4], carry=carryl4) ;
FullAdder (a=a[15], b=b[15], c=carryl4, sum=out[1l5], carry=carryl5)

Instructor: Muhammad Arif Butt, Ph.D.

10

16 Bit Program Counter Implementation

load inc reset
in out
—F~— PC PN
16 16
PC.hdl ~
CHIP Muxl6 {
e { IN a[l16], b[1l6], sel;
IN in[l16], load, inc, reset; OUT out[16l;

. Mux (a=a[0], b=b[0], sel=sel, out=out[0])
OUT OUt [1 6] ’ Mux (a=a[l], b=b[l], sel=sel, out=out[l])

Mux (a=a[l], b=b[15], sel=sel, out=out[1l5]) ;

PARTS: }
Incl6 (in=regContent, out=incremented) ;
//if (inc == 1)
Mux1l6 (a=regContent, b=incremented, sel=inc, out=valuel);
//else if (load == 1)
Muxlo6 (a=valuel, b=in, sel=load, out=value?);
//else if (reset == 1)
Mux1l6 (a=value?2, b=false, sel=reset, out=valuel);
//else

Register (in=value3, load=true, out=regContent, out=out);

- __________________________ I
Instructor: Muhammad Arif Butt, Ph.D. 1

Program Counter Demo

Instructor: Muhammad Arif Butt, Ph.D. 2

the .hdl, .tst and .cmp files of above chips from
the course bitbucket repository:

0.k., and nowyou'll do
. . exactly what I'm telling you !
session on the h/w simulator. You can download
v ¢

https://bitbucket.org/arifpucit/coal-repo/

* Interested students should also try to design,
implement and simulate binary down counter,
cascaded BCD counter, Gray Counter, Ring
counter, and Johnson counter

Coming to office hours does NOT mean you are academically week!

Instructor: Muhammad Arif Butt, Ph.D. 3

