
Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000Lecture # 13

Design of Counters

• Overview of Hack Computer Components

• Overview of Counters

• Why do we need Counter for our Hack Computer

• Concept of Program Counter

• Counter Simulation

• Design and Implementation of PC for Hack Computer

• Demo on H/W Simulator

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Hack Computer System

Instructor: Muhammad Arif Butt, Ph.D.

ALU

Computer System

program

Memory CPU

registers

output

data

intput

CU

4

Counters

Instructor: Muhammad Arif Butt, Ph.D.

5

Overview of Counters

Instructor: Muhammad Arif Butt, Ph.D.

• A counter is a special type of register that goes through a pre-determined sequence
of states upon the application of input pulses

• Counters are used for:
• Counting the number of occurrences of an event
• Keeping time or calculating amount of time between events
• Baud rate generation

• A w-bit counter consists of two main elements:
• A w-bit register to store a w-bit value
• A combinational logic to

• Compute the next value (according to a specific counting function)
• Load a new value of user/programmer choice
• Reset the counter to a default value

• Examples:
• Simple Up/Down Binary Counters
• BCD Counter(s)
• Gray Code Counter
• Ring Counter
• Johnson Counter

6

Why we Need Counter Chip for Hack CPU

Instructor: Muhammad Arif Butt, Ph.D.

• Consider a counter chip designed to contain the address of the
instruction that the computer should fetch and execute next

• In most cases, the counter has to simply increment itself by 1 in each
clock cycle, thus causing the computer to fetch the next instruction in
the program

• In other cases, we may want the program to jump to an instruction at
memory address n, so the programmer want to set the counter to a
value of n, rather than its default counting behavior with n+1, n+2,
and so forth

• Finally, the program’s execution can be restarted anytime by resetting
the counter to 0, assuming that the address of the program’s first
instruction

• In short, we need a loadable and resettable counter

7

Program Counter Register

Instructor: Muhammad Arif Butt, Ph.D.

• Every computer has a special register called the Program Counter,
normally called the PC, which keeps track of the instruction to be
fetched and executed next

• The PC is designed to support three possible control operations:
• Reset: Fetch the first instruction

• Next: Fetch the next instruction

• Goto: Fetch instruction at address n

PC = 0

PC++

PC = n

8

Counter Abstraction

Instructor: Muhammad Arif Butt, Ph.D.

if reset[t] = 1 then

out[t+1] = 0

else if load[t] = 1 then

out[t+1] = in[t]

else if inc[t] = 1 then

out[t+1] = out[t] + 1

else out[t+1] = out[t] //do nothing

PC = in

PC = 0

PC++

9

Counter Simulation

Instructor: Muhammad Arif Butt, Ph.D.

PC (counter)
w bits

outin
w bits

inc load reset

Chip name: PC // 16-bit counter

Inputs: in[16], inc, load, reset

Outputs: out[16]

Function: If reset(t-1) then out(t)=0

else if load(t-1) then out(t)=in(t-1)

else if inc(t-1) then out(t)=out(t-1)+1

else out(t)=out(t-1)

Comment: "=" is 16-bit assignment.

"+" is 16-bit arithmetic addition.

47 47 0 0 1 2 3 4 527 528 529 530 530

527 527 527 527 527 527 527 527 527 527 527 527 527

reset

load

22 23 24 25 26 27 28 29 30 31 32 33 34

inc

clock

in

cycle

out

We assume that we start tracking the counter in time unit 22, when its input
and output happen to be 527 and 47, respectively. We also assume that the
counter’s control bits (reset, load, inc) start at 0 ---- all arbitrary assumptions.

Figure 3.5 Counter simulation. At time 23 a reset signal is issued, causing the counter to emit
0 in the following time unit. The 0 persists until an inc signal is issued at time 25, causing the
counter to start incrementing, one time unit later. The counting continues until, at time 29, the
load bit is asserted. Since the counter’s input holds the number 527, the counter is reset to that
value in the next time unit. Since inc is still asserted, the counter continues incrementing until
time 33, when inc is de-asserted.

51 Sequential Logic

PC (counter)
w bits

outin
w bits

inc load reset

Chip name: PC // 16-bit counter

Inputs: in[16], inc, load, reset

Outputs: out[16]

Function: If reset(t-1) then out(t)=0

else if load(t-1) then out(t)=in(t-1)

else if inc(t-1) then out(t)=out(t-1)+1

else out(t)=out(t-1)

Comment: "=" is 16-bit assignment.

"+" is 16-bit arithmetic addition.

47 47 0 0 1 2 3 4 527 528 529 530 530

527 527 527 527 527 527 527 527 527 527 527 527 527

reset

load

22 23 24 25 26 27 28 29 30 31 32 33 34

inc

clock

in

cycle

out

We assume that we start tracking the counter in time unit 22, when its input
and output happen to be 527 and 47, respectively. We also assume that the
counter’s control bits (reset, load, inc) start at 0 ---- all arbitrary assumptions.

Figure 3.5 Counter simulation. At time 23 a reset signal is issued, causing the counter to emit
0 in the following time unit. The 0 persists until an inc signal is issued at time 25, causing the
counter to start incrementing, one time unit later. The counting continues until, at time 29, the
load bit is asserted. Since the counter’s input holds the number 527, the counter is reset to that
value in the next time unit. Since inc is still asserted, the counter continues incrementing until
time 33, when inc is de-asserted.

51 Sequential Logic

PC (counter)
w bits

outin
w bits

inc load reset

Chip name: PC // 16-bit counter

Inputs: in[16], inc, load, reset

Outputs: out[16]

Function: If reset(t-1) then out(t)=0

else if load(t-1) then out(t)=in(t-1)

else if inc(t-1) then out(t)=out(t-1)+1

else out(t)=out(t-1)

Comment: "=" is 16-bit assignment.

"+" is 16-bit arithmetic addition.

47 47 0 0 1 2 3 4 527 528 529 530 530

527 527 527 527 527 527 527 527 527 527 527 527 527

reset

load

22 23 24 25 26 27 28 29 30 31 32 33 34

inc

clock

in

cycle

out

We assume that we start tracking the counter in time unit 22, when its input
and output happen to be 527 and 47, respectively. We also assume that the
counter’s control bits (reset, load, inc) start at 0 ---- all arbitrary assumptions.

Figure 3.5 Counter simulation. At time 23 a reset signal is issued, causing the counter to emit
0 in the following time unit. The 0 persists until an inc signal is issued at time 25, causing the
counter to start incrementing, one time unit later. The counting continues until, at time 29, the
load bit is asserted. Since the counter’s input holds the number 527, the counter is reset to that
value in the next time unit. Since inc is still asserted, the counter continues incrementing until
time 33, when inc is de-asserted.

51 Sequential Logic

10

16 Bit Program Counter Implementation

Instructor: Muhammad Arif Butt, Ph.D.

CHIP Bit {
IN in, load;
OUT out;

PARTS:
Mux(a=sendBack, b=in, sel=load, out=MuxOut);
DFF(in=MuxOut, out=sendBack, out=out);

}

CHIP Inc16 {
IN in[16];
OUT out[16];
PARTS:
Add16(a=in, b[0]=true, out=out);

}

CHIP Add16 {

IN a[16], b[16];

OUT out[16];

PARTS:

HalfAdder(a=a[0], b=b[0], sum=out[0], carry=carry0);

FullAdder(a=a[1], b=b[1], c=carry0, sum=out[1], carry=carry1);

FullAdder(a=a[2], b=b[2], c=carry1, sum=out[2], carry=carry2);

FullAdder(a=a[3], b=b[3], c=carry2, sum=out[3], carry=carry3);

………

FullAdder(a=a[14], b=b[14], c=carry13, sum=out[14], carry=carry14);

FullAdder(a=a[15], b=b[15], c=carry14, sum=out[15], carry=carry15);

}

CHIP Register {
IN in[16], load;
OUT out[16];

PARTS:
Bit(in=in[0], load=load, out=out[0]);
Bit(in=in[1], load=load, out=out[1]);
Bit(in=in[2], load=load, out=out[2]);
Bit(in=in[3], load=load, out=out[3]);

. . . .
Bit(in=in[15], load=load, out=out[15]);

}

11

16 Bit Program Counter Implementation

Instructor: Muhammad Arif Butt, Ph.D.

CHIP PC {
IN in[16], load, inc, reset;
OUT out[16];

PARTS:
Inc16(in=regContent, out=incremented);

//if (inc == 1)
Mux16(a=regContent, b=incremented, sel=inc, out=value1);

//else if (load == 1)
Mux16(a=value1, b=in, sel=load, out=value2);

//else if (reset == 1)
Mux16(a=value2, b=false, sel=reset, out=value3);

//else
Register(in=value3, load=true, out=regContent, out=out);

}

PC.hdl

CHIP Mux16 {
IN a[16], b[16], sel;
OUT out[16];
PARTS:
Mux(a=a[0], b=b[0], sel=sel, out=out[0]);
Mux(a=a[1], b=b[1], sel=sel, out=out[1]);

. . . .
Mux(a=a[1], b=b[15], sel=sel, out=out[15]);

}

12

Program Counter Demo

Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Interactive Testing
13/PC.hdl

13

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

• Perform testing of the chips designed in today’s
session on the h/w simulator. You can download
the .hdl, .tst and .cmp files of above chips from
the course bitbucket repository:

https://bitbucket.org/arifpucit/coal-repo/
• Interested students should also try to design,

implement and simulate binary down counter,
cascaded BCD counter, Gray Counter, Ring
counter, and Johnson counter

