
Lecture # 21
Hack Assembly Programming - III

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

• Review of Hack Assembly Programs
• Pointers and Arrays
• Input / Output Instructions
• Debugging

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Pointers and Arrays

Instructor: Muhammad Arif Butt, Ph.D.

4

Pointers and Arrays: Example

Instructor: Muhammad Arif Butt, Ph.D.

// for (i=0; i<n; i++)
// arr[i] = -1; Observations:

• Variables that store memory addresses like
arr in this example are called pointers
• Abstraction of arrays exist only in high

level languages. In machine language
there is no abstraction of arrays. Rather
array is a segment of memory of which we
know the base address of this segment and
the length of the array that programmer
has declared
• Arrays are implemented as a block of

memory registers and in order to access
these memory registers one after the other,
we need a variable that holds the current
address
• There is nothing special about pointer

variables, except that their values are
interpreted as addresses

5

Pointers and Arrays: Example

Instructor: Muhammad Arif Butt, Ph.D.

...

...

0
RAM

16
17
18

20
21
22
23
. . .

// for (i=0; i<n; i++)
// arr[i] = -1;
// Let us initialize arr=20, n=5, i=0

// arr = 20
@20
D=A
@arr
M=D

// n = 5
@5
D=A
@n
M=D

// i = 0
@i
M=0

// Loop code continues on next slide...
(LOOP)

20arr:
n:
i:

5
0

6

Pointers and Arrays: Example

Instructor: Muhammad Arif Butt, Ph.D.

...
20
5
1

...
-1

0

16
17
18

20
21
22
23
. . .

after 1
iteration

RAM// Code continues from previous slide
(LOOP)
// if (i==n) goto END
@i
D=M
@n
D=D-M
@END
D;JEQ

// RAM[arr+i] = -1
@arr
D=M
@i
A=D+M
M=-1

// i++
@i
M=M+1
@LOOP
0;JMP

(END)
@END
0;JMP

• Pointers in Hack: Whenever we have to access
memory using a pointer, we need an instruction
like A=expression

• Typical Pointer Semantics: Set the address
register to the contents of some memory register

...

...

0
RAM

16
17
18

20
21
22
23
. . .

20arr:
n:
i:

5
0

7Instructor: Muhammad Arif Butt, Ph.D.

...
20
5
2

...
-1
-1

0

16
17
18

20
21
22
23
. . .

after 2
iterations

RAM// Code continues from previous slide
(LOOP)
// if (i==n) goto END
@i
D=M
@n
D=D-M
@END
D;JEQ

// RAM[arr+i] = -1
@arr
D=M
@i
A=D+M
M=-1

// i++
@i
M=M+1
@LOOP
0;JMP

(END)
@END
0;JMP

• Pointers in Hack: Whenever we have to access
memory using a pointer, we need an instruction
like A=expression

• Typical Pointer Semantics: Set the address
register to the contents of some memory register

...

...

0
RAM

16
17
18

20
21
22
23
. . .

20arr:
n:
i:

5
0

Pointers and Arrays: Example

8Instructor: Muhammad Arif Butt, Ph.D.

...
20
5
3

...
-1
-1
-1

0

16
17
18

20
21
22
23
. . .

after 3
iterations

RAM// Code continues from previous slide
(LOOP)
// if (i==n) goto END
@i
D=M
@n
D=D-M
@END
D;JEQ

// RAM[arr+i] = -1
@arr
D=M
@i
A=D+M
M=-1

// i++
@i
M=M+1
@LOOP
0;JMP

(END)
@END
0;JMP

• Pointers in Hack: Whenever we have to access
memory using a pointer, we need an instruction
like A=expression

• Typical Pointer Semantics: Set the address
register to the contents of some memory register

...

...

0
RAM

16
17
18

20
21
22
23
. . .

20arr:
n:
i:

5
0

Pointers and Arrays: Example

9Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

Interactive Testing
arrays.asm

Manipulating Arrays using Pointers

10

Input & Output

Instructor: Muhammad Arif Butt, Ph.D.

11

I/O Devices: Screen And Keyboard

Instructor: Muhammad Arif Butt, Ph.D.

Simulated screen: 256 columns by 512
rows, black & white memory-mapped
device. The pixels are continuously
refreshed from respective bits in an 8K
memory-map, located at RAM[16384] -
RAM[24575].

Simulated keyboard:
One click on this button causes the
CPU emulator to intercept all the keys
subsequently pressed on the real
computer’s keyboard; another click
disengages the real keyboard from the
emulator.

12

Memory Map of Screen and Keyboard

Instructor: Muhammad Arif Butt, Ph.D.

Hack language convention:
• SCREEN:
• KBD:

base address of the screen memory map

address of the keyboard memory map

data
memory

(16K)

screen
memory map

8k

0

24,576

16,384SCREEN

Hack RAM

Hello
World

KB
Memory map

KBD

13Instructor: Muhammad Arif Butt, Ph.D.

To set pixel (row,col) on/off
word = Screen[32*row + col/16]
word = RAM[16384 + 32*row + col/16]
Set (col%16)th bit of word to 0 or 1
RAM[i] = word

0
1

255

�
�
�

0 1 2 3 4 5 6 7 � � � 511

� � �

� � �

� � �

Black & White Display Unit
• A matrix of 256 rows x 512 columns
• 131072 pixels

Screen Memory Map

row 0

row 1

1111010100000000
0000000000000000

�
�
�

0011000000000001
0000101000000000
0000000000000000

�
�
�

0000000000000000

�
�
�

0000000000000000
0000000000000000

�
�
�

1011010100000000

63

8159
8160

31
32
33

8191
(8K)

Memory Map
Screen (chip)

0
1

row 255

A sequence of 8K x 16 bit words
8192 words
131072 bits

refresh

16 x 32 = 512

(16384)

14

Handling The Keyboard

Instructor: Muhammad Arif Butt, Ph.D.

To check which key is currently pressed:
• Read the contents of RAM[24576] (address KBD)
• If the register contains 0, no key is pressed

• Otherwise, the register contains the scan code of the currently pressed key

24576 k

Scan-code of ‘ k ’ = 75

0000 000001001011

Hack RAM

15

Drawing a Rectangle on The Screen

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	4 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	97

Handling the screen (example)

16 pixels wide

50 pixels long

Code
RAM

Screen

Task: draw a filled rectangle
at the upper left corner of
the screen, 16 pixels wide
and RAM[0] pixels long

16Instructor: Muhammad Arif Butt, Ph.D.

16 black pixels,
corresponding to
the first row of
the rectangle

screen
memory
map

physical
screen

for (i=0; i<n; i++)

draw 16 black pixels at the beginning of row i

addr = SCREEN

n = RAM[0]
i = 0

LOOP:
if i > n goto END
RAM[addr] = -1 //1111111111111111

// advances to the next row
addr = addr + 32
i = i + 1
goto LOOP

END:

goto END

Pseudo code

Drawing a Rectangle on The Screen

17Instructor: Muhammad Arif Butt, Ph.D.

Drawing a Rectangle on The Screen
/* Program: Rectangle.asm
Draws a filled rectangle at the screen's
top left corner, with width of 16 pixels
and height of RAM[0] pixels.
Usage: put a non-negative number
(rectangle's height) in RAM[0] */

@R0
D=M
@n
M=D // n = RAM[0]
@i
M=0 // i = 0
@SCREEN
D=A
@addr
M=D // addr = 16384 (screen’s base
address)

(LOOP)
// ...

//...
(LOOP)

@i
D=M
@n
D=D-M
@END
D;JGT // if i>n goto END
@addr
A=M
M=-1 //RAM[addr]=1111111111111111
@i
M=M+1 // i = i + 1
@32
D=A
@addr
M=D+M // addr = addr + 32
@LOOP
0;JMP // goto LOOP

(END)
@END // program’s end
0;JMP // infinite loop

18Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

Interactive Testing
Rectangle.asm

Drawing a Rectangle on The Screen

19

An Interactive Program

Instructor: Muhammad Arif Butt, Ph.D.

20

Fill: A Simple Interactive Program

Instructor: Muhammad Arif Butt, Ph.D.

Select No animation

Listen to the keyboard

No key is pressed so all
pixels of screen are white

21

Fill: A Simple Interactive Program

Instructor: Muhammad Arif Butt, Ph.D.

When any key is pressed all
pixels of screen becomes
black

22Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

Interactive Testing
Fill.asm

Fill: A Simple Interactive Program

23

Debugging

Instructor: Muhammad Arif Butt, Ph.D.

24

Breakpoints: A Powerful Debugging Tool

Instructor: Muhammad Arif Butt, Ph.D.

The CPU emulator continuously keeps track of:

• A: value of the A register

• D: value of the D register

• PC: value of the Program Counter

• RAM[i]: value of any RAM location

• time: number of elapsed machine cycles

Breakpoints:

• A breakpoint is a pair <variable, value> where variable is one of
{A, D, PC, RAM[i], time} and i is between 0 and 32K.

• Breakpoints can be declared either interactively, or via script commands.

• For each declared breakpoint, when the variable reaches the value, the
emulator pauses the program’s execution with a proper message.

25

Breakpoints Declaration

Instructor: Muhammad Arif Butt, Ph.D.

1. Open the
breakpoints
panel

3. Add, delete,
or update
breakpoints

2. Previously-
declared
breakpoints

26

Breakpoints Declaration

Instructor: Muhammad Arif Butt, Ph.D.

27

Breakpoints Usage

Instructor: Muhammad Arif Butt, Ph.D.

1. New
breakpoint

3. When the A register will be 2, or
RAM[20] will be 5, or 12 time units
(cycles) will elapse, or RAM[21] will be
200, the emulator will pause the
program’s execution with an appropriate
message.

A powerful debugging tool!

2. Run the
program

28

Program Development Process

Instructor: Muhammad Arif Butt, Ph.D.Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	4 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	111

Program development process

happy
with

results?

Find and
fix the
errors

No

Load the program
into the CPU
Emulator, and run it

Yes

Write / edit the
program using a
text editor

Prog.asm

29

Best Practice

Instructor: Muhammad Arif Butt, Ph.D.

Well-written low-level code is
• Short
• Efficient
• Elegant
• Self-describing

Technical tips
• Use symbolic variables and labels
• Use sensible variable and label names
• Variables: lower-case
• Labels: upper-case
• Use indentation
• Start with pseudo code

30

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

• Download all the assembly program from the
course bitbucket repository

https://bitbucket.org/arifpucit/coal/

make changes to them and execute them in the CPU
Emulator

• Run the programs, one instruction at a time, do
the working in your head or on a piece of paper,
while executing the programs one instruction at a
time

