
Lecture # 21
Hack Assembly Programming - III

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data   

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text   
main:      

mov rax,1      
mov rdi,1       
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60      
mov rdi,0      
syscall

0:  b8 01 00 00 00       
5:  bf 01 00 00 00       
a:  48 be 00 00 00 00 00 
11: 00 00 00   
14: ba 1b 00 00 00       
19: 0f 05 
1b: b8 3c 00 00 00       
20: bf 00 00 00 00 
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view
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Solution: multiplex, using an instruction register
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Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g.  a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g.  out) 
q Internal pins (e.g.  nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000



• Review of Hack Assembly Programs
• Pointers and Arrays
• Input / Output Instructions
• Debugging
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Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.
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Pointers and Arrays

Instructor: Muhammad Arif Butt, Ph.D.
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Pointers and Arrays: Example

Instructor: Muhammad Arif Butt, Ph.D.

// for (i=0; i<n; i++)
// arr[i] = -1; Observations:

• Variables that store memory addresses like
arr in this example are called pointers
• Abstraction of arrays exist only in high

level languages. In machine language
there is no abstraction of arrays. Rather
array is a segment of memory of which we
know the base address of this segment and
the length of the array that programmer
has declared
• Arrays are implemented as a block of

memory registers and in order to access
these memory registers one after the other,
we need a variable that holds the current
address
• There is nothing special about pointer

variables, except that their values are
interpreted as addresses
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Pointers and Arrays: Example

Instructor: Muhammad Arif Butt, Ph.D.

...

...

0
RAM

16
17
18

20
21
22
23
. . .

// for (i=0; i<n; i++)
// arr[i] = -1;
// Let us initialize arr=20, n=5, i=0

// arr = 20
@20
D=A
@arr
M=D

// n = 5
@5
D=A
@n  
M=D

// i = 0  
@i
M=0

// Loop code continues on next slide...
(LOOP)

20arr:
n:
i:

5
0
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Pointers and Arrays: Example

Instructor: Muhammad Arif Butt, Ph.D.

...
20
5
1

...
-1

0

16
17
18

20
21
22
23
. . .

after 1
iteration

RAM// Code continues from previous slide
(LOOP)
// if (i==n) goto END  
@i
D=M
@n  
D=D-M  
@END  
D;JEQ

// RAM[arr+i] = -1  
@arr
D=M
@i
A=D+M  
M=-1

// i++  
@i
M=M+1
@LOOP  
0;JMP

(END)
@END  
0;JMP

• Pointers in Hack: Whenever we have to access
memory using a pointer, we need an instruction
like A=expression

• Typical Pointer Semantics: Set the address
register to the contents of some memory register

...

...
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n:
i:

5
0
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...
20
5
2

...
-1
-1

0

16
17
18

20
21
22
23
. . .

after 2
iterations

RAM// Code continues from previous slide
(LOOP)
// if (i==n) goto END  
@i
D=M
@n  
D=D-M  
@END  
D;JEQ

// RAM[arr+i] = -1  
@arr
D=M
@i
A=D+M  
M=-1

// i++  
@i
M=M+1
@LOOP  
0;JMP

(END)
@END  
0;JMP

• Pointers in Hack: Whenever we have to access
memory using a pointer, we need an instruction
like A=expression

• Typical Pointer Semantics: Set the address
register to the contents of some memory register

...

...

0
RAM

16
17
18

20
21
22
23
. . .

20arr:
n:
i:

5
0

Pointers and Arrays: Example
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...
20
5
3

...
-1
-1
-1

0

16
17
18

20
21
22
23
. . .

after 3
iterations

RAM// Code continues from previous slide
(LOOP)
// if (i==n) goto END  
@i
D=M
@n  
D=D-M  
@END  
D;JEQ

// RAM[arr+i] = -1  
@arr
D=M
@i
A=D+M  
M=-1

// i++  
@i
M=M+1
@LOOP  
0;JMP

(END)
@END  
0;JMP

• Pointers in Hack: Whenever we have to access
memory using a pointer, we need an instruction
like A=expression

• Typical Pointer Semantics: Set the address
register to the contents of some memory register

...

...

0
RAM

16
17
18

20
21
22
23
. . .

20arr:
n:
i:

5
0

Pointers and Arrays: Example
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Demo
CPU Emulator

Interactive Testing
arrays.asm

Manipulating Arrays using Pointers
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Input & Output

Instructor: Muhammad Arif Butt, Ph.D.
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I/O Devices: Screen And Keyboard

Instructor: Muhammad Arif Butt, Ph.D.

Simulated screen: 256 columns by 512 
rows, black & white memory-mapped 
device.  The pixels are continuously 
refreshed from respective bits in an 8K 
memory-map, located at RAM[16384] -
RAM[24575].

Simulated keyboard:
One click on this button causes the 
CPU emulator to intercept all the keys 
subsequently pressed on the real 
computer’s keyboard; another click 
disengages the real keyboard from the 
emulator.
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Memory Map of Screen and Keyboard

Instructor: Muhammad Arif Butt, Ph.D.

Hack language convention:
• SCREEN:
• KBD:

base address of the screen memory map  

address of the keyboard memory map

data  
memory

(16K)

screen      
memory map

8k

0

24,576

16,384SCREEN

Hack RAM

Hello 
World

KB 
Memory map

KBD
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To set pixel (row,col) on/off
word = Screen[32*row + col/16]
word = RAM[16384 + 32*row + col/16]
Set (col%16)th bit of word to 0 or 1
RAM[i] = word

0
1

255

�
�
�

0 1 2 3 4 5 6 7 � � � 511

� � �

� � �

� � �

Black & White Display Unit 
• A matrix of 256 rows x 512 columns
• 131072 pixels

Screen Memory Map

row 0

row 1

1111010100000000
0000000000000000

�
�
�

0011000000000001
0000101000000000
0000000000000000

�
�
�

0000000000000000

�
�
�

0000000000000000
0000000000000000

�
�
�

1011010100000000

63

8159
8160

31
32
33

8191
(8K)

Memory Map
Screen (chip)

0
1

row 255

A sequence of  8K x 16 bit words
8192 words
131072 bits

refresh

16 x 32 = 512

(16384)
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Handling The Keyboard

Instructor: Muhammad Arif Butt, Ph.D.

To check which key is currently pressed:
• Read the contents of RAM[24576] (address KBD)
• If the register contains 0, no key is pressed

• Otherwise, the register contains the scan code of the currently pressed key

24576 k

Scan-code of ‘ k ’ = 75

0000 000001001011

Hack RAM
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Drawing a Rectangle on The Screen

Instructor: Muhammad Arif Butt, Ph.D.
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Handling the screen (example)

16 pixels wide

50 pixels long

Code
RAM

Screen

Task: draw a filled rectangle 
at the upper left corner of 
the screen, 16 pixels wide 
and RAM[0] pixels long  
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16 black pixels,  
corresponding to  
the first row of  
the rectangle

screen  
memory  
map

physical  
screen

for (i=0; i<n; i++)

draw 16 black pixels at the beginning of row i

addr = SCREEN  

n = RAM[0]
i = 0

LOOP:
if i > n goto END
RAM[addr] = -1 //1111111111111111

// advances to the next row  
addr = addr + 32
i = i + 1  
goto LOOP

END:

goto END

Pseudo code

Drawing a Rectangle on The Screen



17Instructor: Muhammad Arif Butt, Ph.D.

Drawing a Rectangle on The Screen
/* Program: Rectangle.asm
Draws a filled rectangle at the screen's 
top left corner, with width of 16 pixels 
and height of RAM[0] pixels.
Usage: put a non-negative number
(rectangle's height) in RAM[0] */

@R0
D=M
@n
M=D // n = RAM[0]
@i
M=0 // i = 0
@SCREEN  
D=A
@addr
M=D // addr = 16384 (screen’s base
address)

(LOOP)
// ...

//...
(LOOP)

@i
D=M
@n
D=D-M  
@END
D;JGT // if i>n goto END
@addr
A=M  
M=-1 //RAM[addr]=1111111111111111
@i
M=M+1 // i = i + 1
@32
D=A
@addr
M=D+M // addr = addr + 32
@LOOP
0;JMP // goto LOOP

(END)
@END  // program’s end
0;JMP // infinite loop
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Demo
CPU Emulator

Interactive Testing
Rectangle.asm

Drawing a Rectangle on The Screen
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An Interactive Program

Instructor: Muhammad Arif Butt, Ph.D.
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Fill: A Simple Interactive Program

Instructor: Muhammad Arif Butt, Ph.D.

Select No animation

Listen to the keyboard

No key is pressed so all 
pixels of screen are white
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Fill: A Simple Interactive Program

Instructor: Muhammad Arif Butt, Ph.D.

When any key is pressed all 
pixels of screen becomes 
black
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Demo
CPU Emulator

Interactive Testing
Fill.asm

Fill: A Simple Interactive Program
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Debugging

Instructor: Muhammad Arif Butt, Ph.D.
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Breakpoints: A Powerful Debugging Tool

Instructor: Muhammad Arif Butt, Ph.D.

The CPU emulator continuously keeps track of:

• A:            value of the A register

• D:            value of the D register

• PC:          value of the Program Counter

• RAM[i]:  value of any RAM location

• time:        number of elapsed machine cycles

Breakpoints:

• A breakpoint is a pair <variable, value> where variable is one of 
{A, D, PC, RAM[i], time} and i is between 0 and 32K.

• Breakpoints can be declared either interactively, or via script commands.

• For each declared breakpoint, when the variable reaches the value, the 
emulator pauses the program’s execution with a proper message.
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Breakpoints Declaration

Instructor: Muhammad Arif Butt, Ph.D.

1. Open the 
breakpoints 
panel

3. Add, delete, 
or update 
breakpoints

2. Previously-
declared 
breakpoints



26

Breakpoints Declaration

Instructor: Muhammad Arif Butt, Ph.D.
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Breakpoints Usage

Instructor: Muhammad Arif Butt, Ph.D.

1. New 
breakpoint

3. When the A register will be 2, or 
RAM[20] will be 5, or 12 time units 
(cycles) will elapse, or RAM[21] will be 
200, the emulator will pause the 
program’s execution with an appropriate 
message.

A powerful debugging tool!

2. Run the 
program
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Program Development Process
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Program development process

happy 
with 

results?

Find and 
fix the 
errors

No

Load the program 
into the CPU 
Emulator, and run it

Yes

Write / edit the 
program using a 
text editor

Prog.asm
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Best Practice

Instructor: Muhammad Arif Butt, Ph.D.

Well-written low-level code is
• Short
• Efficient
• Elegant
• Self-describing

Technical tips
• Use symbolic variables and labels
• Use sensible variable and label names
• Variables: lower-case
• Labels: upper-case
• Use indentation
• Start with pseudo code
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Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

• Download all the assembly program from the
course bitbucket repository

https://bitbucket.org/arifpucit/coal/

make changes to them and execute them in the CPU
Emulator

• Run the programs, one instruction at a time, do
the working in your head or on a piece of paper,
while executing the programs one instruction at a
time


