notaAndb
!

\
And
bq

Memory

\
o \ notb aAnﬁNotb
\/ \
/K ::li}7<mt

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb) ;

And (a=nota, b=b, out=wl);
And (a=a, b=notb, out=w2);

Or (a=wl, b=w2, out=out)

program

’
’

Lecture # 27

@R1
D=l

@temp
M=

3

—

0000000000000001
1111110000010000
0000000000010000
1110001100001000

On Improving Processors Performance

#include<stdio.h>
#include<stdlib.h>
int main () {

exit (0) ;
}

printf ("Learning is fun with Arif\n");

For resources visit my personal website:

https://www.arifbutt.me
and course bitbucket repository:

https://bitbucket.org/arifpucit/coal-repo

global main
SECTION .data
msg: db "Learning is fun with Arif",
len msg: equ $ - msg
SECTION .text
main:
mov rax,l
mov rdi, 1l
mov rsi,msg
mov rdx,len msg
syscall
mov rax, 60
mov rdi, 0
syscall

0Ah, Oh

Instructor: Muhammad Arif Butt, Ph.D.

11:
14:
19:
1b:
20:
25:

b8 01 00 00 00

bf 01 00 00 00

48 be 00 00 00 00 00
00 00 00

ba 1b 00 00 00

0f 05

b8 3c 00 00 00

bf 00 00 00 00

0f 05

Today’s Agenda

« CPU Performance Equation
* Single Cycle vs Multi Cycle CPU Architecture

* Pipelined CPU Architecture
— Pipeline Stages

— Pipelined Hazards

— Solutions of Pipeline Hazards

e (CISC vs RISC Architecture

Instructor: Muhammad Arif Butt, Ph.D. 2

CPU Performance Equation

Instructor: Muhammad Arif Butt, Ph.D.

CPU Performance Eguation

time _ instructions o clock cycles o time
program program instructions clock cycles

CPU performance equation analyzes execution time as a product of three factors that are
relatively independent of each other, namely Instruction Count (IC), Clock Cycles Per
instruction (CPI) and Clock Cycle Time (CCT)

* Instruction Count, means number of assembly instructions in the program to
perform a specific task

* Cycles Per Instruction (CPI), means the number of cycles required to execute one
assembly instruction

* Clock Time or Frequency of CPU Clock, means the number of times the CPU
clock ticks per second, e.g., a clock rate of 1 MHz means, the CPU clock ticks one
million times per second. Since one instruction takes a specific number of clock
cycles to execute, therefore, the clock time has a direct impact on CPU performance

Instructor: Muhammad Arif Butt, Ph.D. 4

‘&) CPU Performance Equation

time _ instructions o clock cycles o time
program program instructions clock cycles

Example:
Suppose a program takes 1 billion instructions to execute on a processor running at 2
GHz. Suppose also that 50% of the instructions execute in 3 clock cycles, 30% execute
in 4 clock cycles, and 20% execute in 5 clock cycles. What 1s the execution time for the
program?

Solution:

IC=1.0x10°

CPI= 05*3+03*4+02*5=3.7

Clock Time =1 /(2 x 10°) = 0.5 x 10" seconds

Execution Time = IC x CPI x Clock Time = 10° x 3.7 x 0.5 x 10 = 1.85 seconds

Instructor: Muhammad Arif Butt, Ph.D. >

Single Cycle vs Multi Cycle

CPU Architecture

Instructor: Muhammad Arif Butt, Ph.D.

Single Cycle CPU

* Asingle cycle CPU executes each instruction in one clock cycle, 1.e.,

CPI=1

* Irrespective how simple or how complex an instruction 1s, 1t will take
one clock cycle to execute. So the clock cycle of the CPU has to be
large enough to completely execute the most complex or the slowest
instruction in the ISA

* The disadvantage of single cycle CPU is that; it must operate at the
speed of the slowest nstruction (clock cycle 1s large)

* The advantage of single cycle CPU is that; it 1s easy to implement

Instructor: Muhammad Arif Butt, Ph.D. /

&) Micro Architecture of a Single Cycle CPU

* Suppose we want to design a CPU whose instruction length is 16 bits. Instruction can have
two register operands/addresses or single memory operand/address. 4 bits are reserved for
opcode, 5 bits for register address

o Question#l: How many CPU registers can be accommodated in this architecture and
what can be their size?

o Question#2: How many main memory locations can be addressed?

* Below is a diagram showing the data path for single cycle CPU architecture

A
Instruction Memory| . Register File
L/4y] 32 Registers
) Data Memor
PC—> > y
Instruction 1 s Address

W

—>

j/ Data

Instructor: Muhammad Arif Butt, Ph.D. 8

‘&) Micro Architecture of Multi Cycle CPU

|
0\lese
lRf\Nrite ALUop
IRload ALU1 3
2/
=), |7 Pl regl o | brlo i
MemRead MemWrite // 2 reg2 data17L> anigb!
Addrsel l l .
e - RF INUIINE
l AddR > =
» 0 data2}—p ALU2 =S
8 L R2 \
- dat
L pc s/ P Memory | 3 ogw cou< 8 d
/ HA»{ 000 /
8
Data_in D o J
ata_in ata_out 4
> > QD: Imm4 // »@ %/ »{010
2 Imms Y 8/
7 »@ 7 Pio11
MdRIoad m3 |ZE ’y
Regi
egin \
%

ADD R5, R1, R2

Instructor: Muhammad Arif Butt, Ph.D.

Cycle 1: Fetching Instruction and Increment PC

3\ege OfIng~
s (e) ¢
|8 |- HI
g (| |— $°
B
A — A
S’

SN

~— B, — R —
I, S—
R1Sel
/_// N e \
lRfWrite ALUop
'R"’_adJ , ALU1 3
/.
=), |7 P regl o | > i
MemRead MemWrite // 2 reg2 data17L> gkl j
AddrSel l l !
N = RF A sl
AddR P 2
{ |)R - data2}—p ALU2 =S
L.p 8/ L R2 \
—p PC 8/ Pl / o Memory 8 Picew datavi< 8 /
7 ' 1 A 000 /
N O e 5
Data_in Data_out 4 8 —y oot 8
_ _ » QD: Imm4 // »@ // > 010

2 Imm5 /5/ »@ %/ »lo11 Iﬁl

MdRIoad m3 |ZF ’y

Regin \
S

IR = Mem|[PC]
[PC] = [PC] +1 ADD R5, R1, R2
Instructor: Muhammad Arif Butt, Ph.D. 10

i
9168 Of np~
3 Wt 3
s \Saee ¢
(3 H
==K
=
I\ |,
N—

83 2

SN

Cycle 2: Decoding Instruction and Reading Reg

OleseI
lRfWrite ALUop
IRload 1 ALU1 3
o Pl regl | [0
1 - _ﬁ
MemRead MemWrite // 2 reg2 data1$ 1k
AddrSel l l A
Addroe x RF ALU LR
| [um B S
P 0 - deﬁz; ALU2 =
/
L P regw datawj« i \
Lyl pe s/ P Memory | & = 8 /
/ A 000
8
Data_in Data_out I 4 4 / 8 / _4'001 J
> = mm= .)@ —~ {010
= Imms Y/ >D 8/ >
v Z7E 011
MdRload m3 |ZF ’y
Regin
—Pp,
/ N\
1

Instruction—descode
Rl = RF[7..6]

Instructor: Muhammad Arif Butt, Ph.D.

11

&) Cycle 3: Execute Instruction

S e

SN

R1Sel
B\
lRf\Nrite ALUop
IRload ALU1 |

2 | regl N ’
MemRead MemWrite /// 2 reg2 data17L>
AddrSel l l . RE >ALU y
—_— Es - 3k
l AddR —> / 2
[data2}—p» ALU2 //
8 L R2
] dat
Ly pc L/ P Memory | 8 S ataw<4 8
/ {000\ |
8
Data_in D W ik 8
ata_in ata_out 4
>
lmm5 /5/ »@ %/ »lo11 |ﬁ|
MdRload m3 |ZE »(109
Regi
egin \
S

ALUout = R1 + R2
ADD R5, R1, R2

Instructor: Muhammad Arif Butt, Ph.D. =

&) Cycle 4: Write Result in Register

R1Sel
N e
lRf\Nrite ALUop
IRload , ALU1 3
/
=), |7 Pl regl o | brlo
MemRead MemWrite // 2 reg2 datal >
AddrSel l l .
= = RF ALU 5
l AddR > 2
, b /
8 R2
8 — regw datawm« 8 \
—»| pC | .8/ 1 Memory
/ \ HA»{ 000
8
Data_i —y oot J 8
ata_in Data_out 4 8
= 5 8
Immb5 // »@ 2 {011 |ﬁ|
MdRIoad m3 |ZF ’y
Regin
71\
4

R5 = ALUout
ADD R5, R1, R2

Instructor: Muhammad Arif Butt, Ph.D. 3

Micro Architecture of Multi Cycle CPU

$ 100 Question
Why CPU designers prefer multi-cycle CPU?

o=

RfWrite
IRo_ac
regl
MemRead MemWrite reg2 datal
AddrSel l
y = RF 5
| e B 2
data2
8
8 — regw dataw
L»{ pc L&/ Memory
/
Data_in Data_out 4 8 8
- Imm4
— &
Imm5 > ’D 8
ZE
MdRload .|.IJJ.IJJ3_|ZEI

Instructor: Muhammad Arif Butt, Ph.D. 14

Pipelined CPU Architecture

Instructor: Muhammad Arif Butt, Ph.D. =

Task Order

ol O @]

Laundry Analogy

6:00 pm
| 7:30 pm 9:00 pm 10:30 pm 12:00 pm
- >
I | T/me|

30 30 30 30 30 30 30 30 30 30 30 30

|=

—

?f

1=

Total time taken: 6 hours

T

G

Source: http://www.ece.arizona.edu/~ece462/

Instructor: Muhammad Arif Butt, Ph.D.

16

‘&) Pipeline using Laundry Analo

6:00 pm

| 7:30 8:00 8:30 9:00 Midnight
- >
| | Time

30 30 30 30 30 30

@ IG/ Ié‘ él-?: Total time taken: 3 hours
@ g E’ él-?: 100$ Question

Where to store the

=1 w»
and the dried clothes?
5 =4
\ 4

Source: http://www.ece.arizona.edu/~ece462/

Instructor: Muhammad Arif Butt, Ph.D. v

Task Order

&) Stages of Pipeline and Intermediate Registers
 Pipeline is divided into stages and these stages are connected with
one another to form a pipe like structure

* Input is given from one side and the output of each stage becomes
the mput of next stage. Instructions enter from one end and exit
from another end. Pipelining increases the overall instruction
throughput

* A n-stage pipeline with intermediate registers 1s shown below:

Input Output
—p| Stage#1 p| Stage # 2 p| Stage #3 P> .. Stage#n |—»

N
Clock |

[Intermediate register }

Instructor: Muhammad Arif Butt, Ph.D. 18

‘& A Simple 5 Stage Pipelined Processor

“In Computer Science, Pipelining is the process of arrangement of hardware elements
(functional units) of CPU such that its overall performance is increased. A pipelined
processor allow multiple instructions to execute concurrently while each instruction
uses a different functional unit in the data path

The micro-architecture of a 5-stage pipelined processor (MIPS R3000) is shown
below:

. Instruction Decode Execute i
Instruction Fetch Register Fetch Address Calc. ‘ Memory Access Write Back
IF: Fetch instruction from memory d ID EX MEM WB
ID: Instruction decode and fetch = = - S =
. Next SEQ PC Next SEQ PC _l
operand from register >
. . RS1 &
EX Stage: Execute the instruction or — S 2
calculate operand address & s
e
MEM Stage: Access an operand)
from data memory o 5 v} 5
WB Stage: Write the result into a 2l e 5 E
register m
Sign | Imm
Extend =
v §

WB Data

Instructor: Muhammad Arif Butt, Ph.D. o

(&) INustration of Instruction Pipeline

ClOCkC_yd: 12| 3|4 |56]| 7|89 |10
Instruction# 1 | IF | ID | EX MEM|W#&/|
Instruction # 2 IF | ID | EX [MEMWR/|
Instruction # 3 IF | ID | EX MEM| WR/A
Instruction # 4 IF | ID | EX|MEM WV
Instruction # 5 IF| ID| EX MEM WK/
Instruction # 6 IF | ID| EX|MEM W

Time taken to execute 6 instructions by a

non-pipelined 5 multi-clock cycle processor 6 x 5= 30 clock cycles

For k stages pipeline: n*? instruction will complete in k+ (n-1) clock cycles
For S stage pipeline: 1000 instructions will complete in 5+ (1000-1) = 1004 cc

cc taken on non pipelined processor _ 30

Speed up =

—— = 3 times faster
cc taken on pipelined processor 10

Instructor: Muhammad Arif Butt, Ph.D. 20

‘& Cycle Time of a Pipelined Processor

Cycle time of a pipelined processor 1s dependent on four factors:
* Cycle time of non-pipelined version of the processor
* Number of pipeline stages
* Latch latency
 How evenly the data path logic 1s divided among stages

Cycle Time of non pipelined processor

Cycle Time of Even Pipelined Processor = + Latch Latency

Number of Stages

Cycle Time of Un-Even Pipelined Processor = Cycle Time of longest pipeline stage + Latch Latency

e]
Instructor: Muhammad Arif Butt, Ph.D. 21

‘&) Pipelined Hazards

* In a pipelined processor, ideally we expect a CPI value of 1
and a speedup equal to the number of stages in the pipeline.
But, there are a number of factors that limit this. The
problems that occur in the pipeline are called hazards

* Pipeline hazards are situations, that prevent the next
instruction in the instruction stream from being executing
during its designated clock cycle

* There are three classes or types of pipeline hazards
» Structural Hazards
» Data Hazards
» Control Hazards

Instructor: Muhammad Arif Butt, Ph.D. 22

‘= Structural Hazards

'+ Structural Hazards occur when multiple instructions are
trying to access same resource (caches, memory, I/O devices,
data bus, ...) in the same clock cycle

* Structural hazards arise because there 1s not enough
duplication of resources

Clockc_yc‘: 1123|4506 /| 7819 |10
Instruction# 1 | IF | ID | EX [MEM||WB
Instruction # 2 IF | ID | EX MEM|WB
Instruction # 3 IF | ID | EX MEM| WB
Instruction # 4 IF || ID | EX|MEM| WB
Instruction # 5 IF | ID| EX MEM| WB
Instruction # 6 IF | ID | EX|MEM WB

Instructor: Muhammad Arif Butt, Ph.D. 23

‘@) Structural Hazards: Solution

One of the solution to structural hazards 1s to add more
hardware which 1s of course expensive solution

Another solution i1s wait or stall the pipeline. For this to
work, there must be a mechanism to detect the hazard and
then to stall. It 1s simple and less expensive solution,
however, increases the overall CPI

11

ClOCkC_yCl: 1|2 | 3|4] 56| 7819 |10
Instruction#1 | IF | ID | EX [MEM||WB
Instruction # 2 IF | ID | EX MEM|WB
Instruction # 3 IF | ID | EX MEM| WB
Instruction # 4 NOP || IF | ID | EX MEM|WB
Instruction # 5 IF | ID | EX MEM|WB
Instruction # 6 IF | ID | EX IMEM

WB

e]
Instructor: Muhammad Arif Butt, Ph.D.

24

> f i
G990 ol
S £
& @ %)
s SN 2
[z S &
-1
N,
N—

8 ZS

Data Hazards occur when an instruction depends on result of a prior

instruction still in the pipeline

Data Hazards
Data Dependencies/True Dependencies [Name Dependencies/False Dependencies]
(RAW) <
ADn R2, R
SUB“RZ, RS,
nti Dependencies utput Dependencies
(WAR) (WAW)

Solution: Register renaming

Normally WAR hazarfis occur ADD R1 @ R3 app[R1, R2, R3
1n out-of-order execution
SUB| R2 RS, R6 SUB R1l|, R5, R6
/

Normally WAW hazards occur in
processors that allow an instruction to
proceed even when a previous instruction is
stalled (allow out-of-order completion)
KSolution: Register renaming .

Instructor: Muhammad Arif Butt, Ph.D. 25

RAW Hazard

Instruction#1: ADD| R1l} R2, R3
Instruction#2: SUB R4, R5, |R1

o
o~
o~
8 ZS

SN

3109 Of >
3 A
s Wt 0
S g &2 3|
==k
=)
N,
—

Clock Cycle 1 2 3 4 5 6

—y
Instruction # 1 | IF ID | EX MEM|IWB
Instruction # 2 IF || ID)| EX IMEM|WB

Instructor: Muhammad Arif Butt, Ph.D. 26

Instruction#1: ADD RlJ R2, R3
Instruction#2: SUB R4, R5,|R1

Clock Cycle 1 2 3 4 5 6

—y
Instruction # 1 | IF ID | EX MEM|IWB
Instruction # 2 IF || ID)| EX IMEM|WB

Clock Cycle 1 2 3 4 5 6 7 8

—y
Instruction# 1| IF | ID | EX MEM| WB
Instruction # 2 IF |NOP|NOP|NOP ID] EX MEM

Solutions to Data Hazards:
. Stall the pipeline
. Result/operand Forwarding

. Out of order or Dynamic Execution
. Speculative execution
. Branch predictions
. Data flow analysis

Instructor: Muhammad Arif Butt, Ph.D.

‘&) Control Hazards

' Instructions that change the program counter leads to control
hazards. For example, all branch instructions change the PC
register from executing the next instruction in sequence to
some other location

Instruction#1: CMP R1l, R2
Instruction#2: JEQ loop/1048

wers | COKCyle 1o |3 e | s |
104 cMp R1, R2| IF | ID | EX MEM| WB
108 JEQ 1048 IF | ID | EX MEM|WB
112| Instruction # 3 IF | ID | EX|MEM
116| Instruction # 4 IF | ID| EX
120 Instruction # 5 IF | ID

e]
Instructor: Muhammad Arif Butt, Ph.D. 28

2 Control Hazards: Solutions
"« Flush the pipeline
* Delayed Branch (from before, from target, from follow-up)
* Dynamic branch prediction
* 1 or 2-bit predictor
* Correlating predictor
* Tournament predictor

woess | COSKCYel |0 || s |
104 cMp R1, R2| IF | ID | EX MEM| WB
108| JEQ 1048 IF | ID | EX IMEM|WB
112| Instruction # 3 IF | ID | EX|MEM
116| Instruction # 4 IF | ID| EX
120 Instruction # 5 IF | ID

Instructor: Muhammad Arif Butt, Ph.D. 29

S———

K

Address

104

108

112

116

120

‘&) Control Hazards: Flushing

Clock Cycle 1l 2 3 | 4 5 1 6
—
cMp R1, r2| IF | ID | EX MEM| WB
JEQ 1048 IF | ID | EX MEM|WB
Instruction # 3 IF ID | EX|MEM
Instruction # 4 IF ID | EX
Instruction # 5 IF| ID

Instructor: Muhammad Arif Butt, Ph.D.

Address Clock Cycle 1 2 3 4 5 6 7 8 0

104 cMP R1, R2| IF ID | EX MEM| WB

108 JEQ 1048 IF | ID | EX [MEM|[|WB
1048| Instruction # n IF | ID | EX
1052| Instruction # n+1 IF | ID
105€| Instruction # n+2 IF

Instructor: Muhammad Arif Butt, Ph.D. 31

RISC vs CISC Architecture

Instructor: Muhammad Arif Butt, Ph.D. 32

RISC vs CISC

Memory

’ Register File

1

2 R1 R2

3 R3 R4 - ALU |:>
5 9

. R7 RS

7 10

LOAD R1l, Mem|[5]

LOAD R2, Mem|[7] MUL Mem[5], Mem|[7]
PROD R1, R2

STORE Mem|[5], Rl

Instructor: Muhammad Arif Butt, Ph.D. 33

o 0 =N o

RISC vs CISC

Reduced Instruction Computing

Simple and less number (around 100) of
instructions which are easy to decode and
implement

Instruction size i1s fixed and small usually size
of a single word (32 bits)

Instructions take only one clock cycle to
complete their execution (CPI<1.5)

CPU control 1s
memory

hard wired without control

Arithmetic and logical operations only use
register operands. Memory referencing is only
allowed by load and store instructions

More general purpose registers (32-192)

Fewer and simple addressing modes (3-5)
Pipelining is easy to implement

Examples: RISC-V, MIPS, ARM, Power PC,

SPARC, Alpha, Blackfin, Atmel’s AVR,
Motorola 88000, Intel 1860, Intel 1960

l.

W 03

Complex Instruction Computing

Complex and more number (120 — 350) of
instructions which are difficult to decode and
implement

Instructions are of variable sizes depending on
their complexity (1-15 bytes)

Instructions take varying amount of clock cycles
to complete their execution (2>CPI<15)

CPU control is micro-coded using control
memory (ROM)

Arithmetic and logical operations can be applied
to both memory and register operands

Less general purpose registers (8-24)
More and complex addressing modes (12-24)

Pipelining is difficult to implement
Examples: PDP-11, IBM 370/168, VAX 11/780,
Motorola 68000 and Intel x86

Instructor: Muhammad Arif Butt, Ph.D.

34

0.k., and nowyou'll do
exactly what I'm telling you !

Coming to office hours does NOT mean you are academically week!

Instructor: Muhammad Arif Butt, Ph.D. 35

