notaAndb
!

\
And
bq

Memory

\
o \ notb aAnﬁNotb
\/ \
/K ::li}7<mt

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb) ;

And (a=nota, b=b, out=wl);
And (a=a, b=notb, out=w2);

Or (a=wl, b=w2, out=out)

program

’
’

Lecture # 33

@R1
D=l

@temp
M=

3

—

0000000000000001
1111110000010000
0000000000010000
1110001100001000

Data Transfer Instructions & Process Stack

#include<stdio.h>
#include<stdlib.h>
int main () {

exit (0) ;
}

printf ("Learning is fun with Arif\n");

For resources visit my personal website:

https://www.arifbutt.me
and course bitbucket repository:

https://bitbucket.org/arifpucit/coal-repo

global main
SECTION .data
msg: db "Learning is fun with Arif",
len msg: equ $ - msg
SECTION .text
main:
mov rax,l
mov rdi, 1l
mov rsi,msg
mov rdx,len msg
syscall
mov rax, 60
mov rdi, 0
syscall

0Ah, Oh

Instructor: Muhammad Arif Butt, Ph.D.

11:
14:
19:
1b:
20:
25:

b8 01 00 00 00

bf 01 00 00 00

48 be 00 00 00 00 00
00 00 00

ba 1b 00 00 00

0f 05

b8 3c 00 00 00

bf 00 00 00 00

0f 05

Today’s Agenda

e Move instruction (mov, MOVZX, MOVSX, cmovcc)

Load Effective Address (lea, 1ds, lss, les, 1lfs, lgs)

* Exchange Instruction (xchg)

Process Stack

Stack Operations (push, pop)

Instructor: Muhammad Arif Butt, Ph.D. 2

mov Instruction

* The MOV instruction is used for moving data from one storage space to another

» It takes two operands and its general syntax is:
MOV destination, source

* Both the operands of MOV instruction should be of same size and the value of
source operand remains unchanged

MOV instruction does not change the flags register
* If both operands are same registers, it acts a a NOP instruction
* The MOV instruction may have one of the following five forms —
MOV register, immediate
MOV register, register
MOV memory, register
MOV register, memory

MOV memory, immediate

Note: Transfer of data from one memory location to another 1s not allowed

e]
Instructor: Muhammad Arif Butt, Ph.D. 3

& mov Instruction (Immediate data to register)

MOV register, immediate
 Examples:
mov rax, Oxaaaaaaaabbbbbbbb
mov eax, 0Oxaaaaaaaa
mov ax, 0xdddd
mov al, Ox11

mov ah, Oxcc

Instructor: Muhammad Arif Butt, Ph.D. 4

mov Instruction (Register to Register)

MOV register, register
* Examples:
mov rbp, rax
mov rl0, rbp
mov rlld, rl0d
mov rl2w, rllw

mov rl3b, rl2b

Instructor: Muhammad Arif Butt, Ph.D.

mov Instruction (Register to Memory)

MOV memory, register

 Examples:
mov byte [var], al
mov word [var], ax
mov dword [var], eax

mov gword [var], rax

Instructor: Muhammad Arif Butt, Ph.D.

mov Instruction (Memory to Register)

MOV register, memory

 Examples:
mov rsi, gword [var]
mov rld4d, dword [var]
mov rlb5w, word [var]

mov dil, byte [var]

Instructor: Muhammad Arif Butt, Ph.D.

lea Instruction

 The address of a variable can be obtained with the load effective address, or
lea, instruction. So lea instruction is used to load address of a variable into a
register and later manipulate the data indirectly with the register as a pointer

* The lea instruction has no effect on the rflags register

 The format of load effective address instruction is as follows:
lea register, memory

 Examples:
lea rax, var

mov byte ptr [rax], 54

Note: MOV instruction moves the contents of the source into the destination,
while the LEA 1nstruction moves the address of the source into the destination

Instructor: Muhammad Arif Butt, Ph.D. 8

xchg Instruction

 The xchg instruction is used to exchange or swap the contents of two registers
or the contents of a a register and a memory location:

xchg register, register

xchg register, memory
 Example:

mov rax, 0x1234567890abcdef

mov rbx, 0x9999999999999999

xchg rax, rbx

Instructor: Muhammad Arif Butt, Ph.D. ?

Example Code: movingdata.nasm

Instructor: Muhammad Arif Butt, Ph.D. 10

Process Stack

Instructor: Muhammad Arif Butt, Ph.D. H

The diagram shows the logical process address space

At the lowest address, we have the code section that
contains machine code instructions of our executable
program

Above the code section we have initialized and un-
initialized data sections for global variables

Heap 1s used for dynamic memory allocation and it
grows towards higher addresses

Finally, the process stack is at the top of the memory and
grows from higher memory addresses towards lower
memory addresses in architectures like Intel, MIPS,

Motorola, SPARC

High level languages like C/C++ make extensive use of
the stack like temporary storing the arguments passed to
a function, local variables and so on. (we will discuss
this 1n detail in later part of the course)

Stack

1)

Heap

Un-Initialized Data

(.bss)

Initialized Data
(.data)

Code
(.text)

‘&) Logical Process Address Space

0x7FFFFFFFFFFF
(131 TiB)

0x400000

NPT

Instructor: Muhammad Arif Butt, Ph.D.

12

Process Stack

 From Assembly programmer perspective, the
use of process stack is quite simple and consist
of either of the following two operations

o A PUSH operation that stores data on the
stack (push reg/immediate)

o A POP operation that removes data from the
stack (pop req)

0x1122334455667788

Oxbbbbbbbbbbbbbbbb

Oxaaaaaaaaaaaaaaaa

0x8877665544332211

0x00001a2b3c4d5e6f

Hi address

Stack grow
towards smaller
addresses

o ISP

< 'S D

Low address

Instructor: Muhammad Arif Butt, Ph.D.

13

Example Code: stack.nasm

Instructor: Muhammad Arif Butt, Ph.D. 4

0.k., and nowyou'll do
exactly what I'm telling you !

Coming to office hours does NOT mean you are academically week!

Instructor: Muhammad Arif Butt, Ph.D. =

