
Lecture # 33
Data Transfer Instructions & Process Stack

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

For resources visit my personal website:
https://www.arifbutt.me
and course bitbucket repository:
https://bitbucket.org/arifpucit/coal-repo

• Move instruction (mov, movzx, movsx, cmovcc)
• Load Effective Address (lea, lds, lss, les, lfs, lgs)
• Exchange Instruction (xchg)

• Process Stack
• Stack Operations (push, pop)

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3Instructor: Muhammad Arif Butt, Ph.D.

mov Instruction
• The MOV instruction is used for moving data from one storage space to another
• It takes two operands and its general syntax is:

MOV destination, source
• Both the operands of MOV instruction should be of same size and the value of

source operand remains unchanged
• MOV instruction does not change the flags register
• If both operands are same registers, it acts a a NOP instruction
• The MOV instruction may have one of the following five forms −

MOV register, immediate
MOV register, register
MOV memory, register
MOV register, memory
MOV memory, immediate

Note: Transfer of data from one memory location to another is not allowed

4Instructor: Muhammad Arif Butt, Ph.D.

mov Instruction (Immediate data to register)
MOV register, immediate

• Examples:

mov rax, 0xaaaaaaaabbbbbbbb

mov eax, 0xaaaaaaaa

mov ax, 0xdddd

mov al, 0x11

mov ah, 0xcc

5Instructor: Muhammad Arif Butt, Ph.D.

mov Instruction (Register to Register)
MOV register, register

• Examples:

 mov rbp, rax

mov r10, rbp

mov r11d, r10d

mov r12w, r11w

mov r13b, r12b

6Instructor: Muhammad Arif Butt, Ph.D.

mov Instruction (Register to Memory)
MOV memory, register

• Examples:

mov byte [var], al

mov word [var], ax

mov dword [var], eax

mov qword [var], rax

7Instructor: Muhammad Arif Butt, Ph.D.

mov Instruction (Memory to Register)
MOV register, memory

• Examples:

 mov rsi, qword [var]

mov r14d, dword [var]

mov r15w, word [var]

mov dil, byte [var]

8Instructor: Muhammad Arif Butt, Ph.D.

lea Instruction
• The address of a variable can be obtained with the load effective address, or

lea, instruction. So lea instruction is used to load address of a variable into a
register and later manipulate the data indirectly with the register as a pointer

• The lea instruction has no effect on the rflags register
• The format of load effective address instruction is as follows:

lea register, memory
• Examples:
 lea rax, var

mov byte ptr [rax], 54

Note: MOV instruction moves the contents of the source into the destination,
while the LEA instruction moves the address of the source into the destination

9Instructor: Muhammad Arif Butt, Ph.D.

xchg Instruction
• The xchg instruction is used to exchange or swap the contents of two registers

or the contents of a a register and a memory location:
xchg register, register
xchg register, memory

• Example:
 mov rax, 0x1234567890abcdef

mov rbx, 0x9999999999999999
xchg rax, rbx

10Instructor: Muhammad Arif Butt, Ph.D.

Demo

33/movingdata.nasm

Example Code: movingdata.nasm

11

Process Stack

Instructor: Muhammad Arif Butt, Ph.D.

12Instructor: Muhammad Arif Butt, Ph.D.

Logical Process Address Space
• The diagram shows the logical process address space
• At the lowest address, we have the code section that

contains machine code instructions of our executable
program

• Above the code section we have initialized and un-
initialized data sections for global variables

• Heap is used for dynamic memory allocation and it
grows towards higher addresses

• Finally, the process stack is at the top of the memory and
grows from higher memory addresses towards lower
memory addresses in architectures like Intel, MIPS,
Motorola, SPARC

• High level languages like C/C++ make extensive use of
the stack like temporary storing the arguments passed to
a function, local variables and so on. (we will discuss
this in detail in later part of the course)

4Instructor: Muhammad Arif Butt, Ph.D.

Memory Model of x86-64
• The layout of various segments of a process running on a

Linux system is shown

• The x86-64 CPU chips that you can buy today implement
48 bit logical address for virtual memory (as shown), and
40 bits for physical memory

• The 64 bit Logical address can be broken down as:

Stack

Heap
Un-Initialized Data

(.bss)

Initialized Data
(.data)

Code
(.text)

0x0 (48 bits L.A)

0x7FFFFFFFFFFF
(131 TiB)

63 -48 47 39 38 -30 29 - 21 20 - 12 11 - 0

Unused PML4 index Page directory
pointer index

Page directory
index

Page table
index Page offset

0x400000

13Instructor: Muhammad Arif Butt, Ph.D.

Process Stack
0x1122334455667788

0xbbbbbbbbbbbbbbbb

0xaaaaaaaaaaaaaaaa

0x8877665544332211

Stack grow
towards smaller
addresses

• From Assembly programmer perspective, the
use of process stack is quite simple and consist
of either of the following two operations
o A PUSH operation that stores data on the

stack (push reg/immediate)
o A POP operation that removes data from the

stack (pop reg)

0x00001a2b3c4d5e6f

14Instructor: Muhammad Arif Butt, Ph.D.

Demo

33/stack.nasm

Example Code: stack.nasm

15

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

