
Lecture # 33
Data Transfer Instructions & Process Stack 

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data   

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text   
main:      

mov rax,1      
mov rdi,1       
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60      
mov rdi,0      
syscall

0:  b8 01 00 00 00       
5:  bf 01 00 00 00       
a:  48 be 00 00 00 00 00 
11: 00 00 00   
14: ba 1b 00 00 00       
19: 0f 05 
1b: b8 3c 00 00 00       
20: bf 00 00 00 00 
25: 0f 05
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Solution: multiplex, using an instruction register
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Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g.  a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g.  out) 
q Internal pins (e.g.  nota, notb, aAndNotb, notaAndb)
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Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

For resources visit my personal website:
https://www.arifbutt.me
and course bitbucket repository:
https://bitbucket.org/arifpucit/coal-repo



• Move instruction (mov, movzx, movsx, cmovcc)
• Load Effective Address (lea, lds, lss, les, lfs, lgs)
• Exchange Instruction  (xchg)

• Process Stack
• Stack Operations (push, pop)
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Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.
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mov Instruction
• The MOV instruction is used for moving data from one storage space to another
• It takes two operands and its general syntax is:

MOV destination, source
• Both the operands of MOV instruction should be of same size and the value of

source operand remains unchanged
• MOV instruction does not change the flags register
• If both operands are same registers, it acts a a NOP instruction
• The MOV instruction may have one of the following five forms −

MOV register, immediate
MOV register, register
MOV memory, register
MOV register, memory
MOV memory, immediate

Note: Transfer of data from one memory location to another is not allowed
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mov Instruction (Immediate data to register)
MOV register, immediate

• Examples:

mov rax, 0xaaaaaaaabbbbbbbb

mov eax, 0xaaaaaaaa

mov ax, 0xdddd

mov al, 0x11

mov ah, 0xcc
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mov Instruction (Register to Register)
MOV register, register

• Examples:

 mov rbp, rax

mov r10, rbp

mov r11d, r10d

mov r12w, r11w

mov r13b, r12b 
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mov Instruction (Register to Memory)
MOV memory, register

• Examples:

mov byte [var], al

mov word [var], ax

mov dword [var], eax

mov qword [var], rax
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mov Instruction (Memory to Register)
MOV register, memory

• Examples:

 mov rsi, qword [var]

mov r14d, dword [var]

mov r15w, word [var]

mov dil, byte [var]
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lea Instruction 
• The address of a variable can be obtained with the load effective address, or

lea, instruction. So lea instruction is used to load address of a variable into a
register and later manipulate the data indirectly with the register as a pointer

• The lea instruction has no effect on the rflags register
• The format of load effective address instruction is as follows:

lea register, memory
• Examples:
 lea rax, var

mov byte ptr [rax], 54

Note: MOV instruction moves the contents of the source into the destination,
while the LEA instruction moves the address of the source into the destination
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xchg Instruction 
• The xchg instruction is used to exchange or swap the contents of two registers

or the contents of a a register and a memory location:
xchg register, register
xchg register, memory

• Example:
  mov rax, 0x1234567890abcdef        

mov rbx, 0x9999999999999999        
xchg rax, rbx
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Demo

33/movingdata.nasm

Example Code: movingdata.nasm
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Process Stack

Instructor: Muhammad Arif Butt, Ph.D.
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Logical Process Address Space
• The diagram shows the logical process address space
• At the lowest address, we have the code section that

contains machine code instructions of our executable
program

• Above the code section we have initialized and un-
initialized data sections for global variables

• Heap is used for dynamic memory allocation and it
grows towards higher addresses

• Finally, the process stack is at the top of the memory and
grows from higher memory addresses towards lower
memory addresses in architectures like Intel, MIPS,
Motorola, SPARC

• High level languages like C/C++ make extensive use of
the stack like temporary storing the arguments passed to
a function, local variables and so on. (we will discuss
this in detail in later part of the course)
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Memory Model of x86-64
• The layout of various segments of a process running on a

Linux system is shown

• The x86-64 CPU chips that you can buy today implement
48 bit logical address for virtual memory (as shown), and
40 bits for physical memory

• The 64 bit Logical address can be broken down as:

Stack

Heap
Un-Initialized Data 

(.bss)

Initialized Data
(.data)

Code
(.text)

0x0 (48 bits L.A)

0x7FFFFFFFFFFF
(131 TiB)

63 -48 47 39 38 -30 29 - 21 20 - 12 11 - 0

Unused PML4 index Page directory 
pointer index

Page directory 
index

Page table 
index Page offset

0x400000
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Process Stack
0x1122334455667788

0xbbbbbbbbbbbbbbbb

0xaaaaaaaaaaaaaaaa

0x8877665544332211

Stack grow 
towards smaller 
addresses

• From Assembly programmer perspective, the
use of process stack is quite simple and consist
of either of the following two operations
o A PUSH operation that stores data on the

stack (push reg/immediate)
o A POP operation that removes data from the

stack (pop reg)

0x00001a2b3c4d5e6f
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Demo

33/stack.nasm

Example Code: stack.nasm
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Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!


