
Lecture # 34
Memory Addressing Modes

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

For resources visit my personal website:
https://www.arifbutt.me
and course bitbucket repository:
https://bitbucket.org/arifpucit/coal-repo

• Implied addressing mode
• Immediate addressing mode
• Register addressing mode
• Register Indirect addressing mode
• Auto Increment addressing mod
• Auto Decrement addressing mode
• Direct/Absolute addressing mode
• Memory Indirect addressing mode
• Displacement addressing modes
• x86-64 Base-Index-Scale-Displacement addressing mode

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3Instructor: Muhammad Arif Butt, Ph.D.

• In assembly language programming, the term addressing modes refers to the
way in which the operand(s) of an instruction is/are specified, which can be
immediate values, registers or memory locations

• An operand field provides the location, where the data to be processed is
stored. Different architectures support different addressing modes

• x86 instructions vary in the number of operands, however, most instructions
use two operands with the first operand as destination (Intel syntax). The
following combinations are typically legal, but again this varies from
instruction to instruction
Ø Register to register
Ø Register to memory
Ø Memory to register
Ø Immediate to register
Ø Immediate to memory

Addressing Modes
Opcode Operand(s)General format of an assembly instruction:

4Instructor: Muhammad Arif Butt, Ph.D.

• In implied addressing mode, the operand is specified in the instruction
opcode. Zero address instructions are designed with implied addressing
mode

• Examples:
o The CLA instruction means clear the Accumulator register
o The CMA instruction means complement the Accumulator register
o The CLE instruction means clear the overflow flag
o The ION instruction means set the interrupt bit on
o The IOF instruction means set the interrupt bit off
o The stack based instruction ADD means, take two operands from top of

process stack, add them, and place the result back on top of stack
• Pros/Cons:

o The instruction size is very small

Implied Addressing Mode

Opcode

5Instructor: Muhammad Arif Butt, Ph.D.

• In immediate addressing mode, the operand (8, 16, 32, 64 bits) is directly
provided as a constant in the instruction itself

• Examples:
o MOV al, 0x3A
o MOV eax, 123

• Pros/Cons:
o Fast, since no memory reference is required to access the data
o Range of constant value depends on the total number of bits of the

operand field in the instruction. For example, for 8 bit operand, you can
have an unsigned constant ranging from 0 to 255, or a signed constant
ranging from -128 to 127

Immediate Addressing Mode

Opcode Operand(s)

6Instructor: Muhammad Arif Butt, Ph.D.

• In register addressing mode, the operand is present in the register, and the
register number is encoded within the instruction itself

• Examples:
o MOV eax, ecx
o ADD rax, rcx

• Pros/Cons:
o Less number of bits required to encode the registers, as compared to

memory address. For example if there are a total of 16 registers, only 4
bits are required to encode one register

o Speed is better as registers can be accessed far quickly than memory

Register Addressing Mode

Opcode Operand1 Operand2
0

1

2

3

.

.

.

15

Register File

7Instructor: Muhammad Arif Butt, Ph.D.

• In register-indirect addressing mode, the register contains memory address
of operand rather than the operand itself

Register-Indirect Addressing Mode

0

1

2

3 54 (mem addr)

.

.

.

15

Register File

• Example:
o MOV rax, qword[r3]

• Pros/Cons:
o For 1 GiB memory, if we want to encode the memory

address directly inside the instruction, we need 30 bits,
thus increasing the size of the instruction. Register-
indirect addressing mode reduces the instruction size

o Disadvantage is a bit of computation is involved as
compared to register addressing mode

0

1

2

3

.

.

.

54 201

.

.

.

1023

Memory

Opcode Operand1 Operand2

8Instructor: Muhammad Arif Butt, Ph.D.

• In auto-increment addressing mode the effective address of the operand is
the contents of a register specified in the instruction. After accessing the
operand, the contents of this register are automatically incremented to
point to the next operand in memory

• Useful for stepping through arrays in a loop, where register r2 contains the
start of array

• One register reference, one memory reference and one ALU operation is
required to access the data

Auto-Increment Addressing Mode

• Example:
o Add r1, [r2]+ r1 = r1 + M[r2]

r2 = r2 + d // where d is the size of an element

9Instructor: Muhammad Arif Butt, Ph.D.

• In auto-decrement addressing mode the effective address of the operand is
the contents of a register specified in the instruction. Before accessing the
operand, the contents of this register are automatically decremented and
are then used as the effective address of the operand

• One register reference, one memory reference and one ALU operation is
required to access the data

Auto-Decrement Addressing Mode

• Example:
o Add r1, -[r2] r2 = r2 - d // where d is the size of an element

r1 = r1 + M[r2]

10Instructor: Muhammad Arif Butt, Ph.D.

• In direct/absolute addressing mode, the actual memory address is given
inside the instruction usually indicated by a variable name

Direct/Absolute Addressing Mode

Opcode Memory Address

• Examples:
o MOV al, byte[600]

• Pros/Cons:
o Effective address is there inside the instruction itself,

therefore, only one memory reference is required to
access the operand

o Consider a fixed length instruction of 16 bits only,
add reg, [addr], with 5 bits for opcode, 4 bits
for register. Then we are left with only 9 bits to
encode the memory address. So only 512 memory
locations can be accessed

0

1

2

3

.

.

.

600 123

.

.

.

1023

Memory

11Instructor: Muhammad Arif Butt, Ph.D.

• In in-direct addressing mode, the address inside the instruction is the
memory address, which further contain the address where the actual
operand resides (used to implement pointers and passing parameters)

Memory In-Direct Addressing Mode

Opcode Memory Address

• Pros/Cons:
o Large memory address space can be accessed using

in-direct addressing mode
o Slow, since two memory accesses are required to

access the operand

0

1

2

3

.

.

.

128 532 (mem addr)

.

.

.

.

532 operand

.

.

.

.

.

1023

Memory

12Instructor: Muhammad Arif Butt, Ph.D.

• In displacement addressing mode, the operand is at some memory location,
whose effective address is the sum of some register contents and a constant
within the instruction itself. Generally, it is of three categories:
o Relative addressing mode
o Indexed addressing mode
o Base addressing mode

Displacement Addressing Mode

Opcode R A 0

1

2

3

.

.

.

.

532 operand

.

.

.

.

.

1023

Memory

0

1

2

3 value

.

.

.

15

Register File

13Instructor: Muhammad Arif Butt, Ph.D.

• This is also called PC Relative addressing mode, and is used to implement
intra segment transfer of control (branching)

Relative Addressing Mode

Opcode of JMP 99
.
.

4686 JMP 100

4687

.

.

.

4786 instruction

.

.

.

4687 +

Remember, PC always contains the address of the next instruction, so the offset or displacement should be one less

Program Counter

4786
Program Counter

Memory

14Instructor: Muhammad Arif Butt, Ph.D.

Indexed Addressing Mode
• In indexed addressing mode, the effective address of the operand is generated by

adding a constant value to the contents of a register
• Used to access or implement arrays efficiently

Opcode 4
.
.
.

1000

1001

1002

1003

1004 operand

1005

.

.

1000 +
SI

Memory

• Example:
o MOV eax, [si + 4]

Base address of array

15Instructor: Muhammad Arif Butt, Ph.D.

• In x86-64, there are four components used to compute the 64-bit effective address:
[baseAddr + (indexReg * scaleValue) + displacement]

o baseAddr is a register or a variable name
o indexReg must be a register
o scaleValue is a 2-bit constant factor that is either 1, 2, 4, or 8
o displacement is an immediate value/offset, normally limited to 32 bits

• Examples:

X86-64 Displacement Addressing Mode

; baseAddr only
MOV rax, qword[rbx]
; baseAddr with displacement
MOV rax, qword[rbx + 128]
; indexReg with displacement
MOV rax, qword[rdi*2 + 128]
; baseAddr with indexReg
MOV rax, qword[rbx+rsi*4]
; baseAddr with indexReg and displacement
MOV eax, dword[rbx+rsi*4+ 50]

16Instructor: Muhammad Arif Butt, Ph.D.

Examples: X86-64 Displacement Addressing Mode
1015 0x00

1014 0x00

1013 0x00

1012 0x4c

1011 0x00

1010 0x00

1009 0x00

1008 0x1c

1007 0x00

1006 0x00

1005 0x00

1004 0x2a

1003 0x00

1002 0x00

1001 0x00

1000 0x65arr

arr[1]

arr[2]

arr[3]

arr[0]

[baseAddr + (indexReg * scaleValue) + displacement]
arr dd 0x65, 0x2a, 0x1c, 0x46

;First element of the array can be accessed as
mov eax, dword [arr]

;Another way to access the first element of the array is
mov rbx, arr
mov eax, dword [rbx]

;To access the third element of the array
mov eax, dword [arr+8]

;Another way to access the third element of the array is
mov rbx, arr
mov rsi, 8
mov eax, dword [rbx+rsi]

;Another way to access the third element of the array is
mov rsi, 2
mov eax, dword [arr+rsi*4]

17

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

