ese Ol oS
A \

Memory

@R1
a —o h CHIP Xor { program . > D=
; ' | IN a, b; ALU
\ notb aAndiotd OUT out: : — * @temp
\/ \ lata M=D
b out ’ PARTS:: ’
w. / Hbta / Not (:!_I'l=a, out=nota) ; '\;3?:%%]
’ R notaAndb Not (in=b, out=notb) ;
4/ And (a=nota, b=b, out=wl);
b And(a=a, b=notb, out=w2); 0000000000000001
Or (a=wl, b=w2, out=out);
} 1111110000010000
0000000000010000
L t 5! |1 1110001100001000
GDB with PEDA Plugi
global main
SECTION .data
msg: db "Learning is fun with Arif", O0Ah, Oh
len msg: equ $ - msg 0: b8 01 00 00 0O
SECTION .text 5: bf 01 00 00 00
#include<stdio.h> T e rax, 1 a: 48 be 00 00 00 00 00
#include<stdlib.h> mov rdi, 1 11: 00 00 00

int main () { mov rsi,msg H. 14: ba 1b 00 00 00
Hl mov rdx,len msg 19: 0f 05

printf ("Learning is fun with Arif\n"); syscall

exit (0); e 1b: b8 3c 00 00 00
} mov rdi, 0 20: bf 00 00 00 00
syscall 25: 0f 05

For resources visit my personal website:
https://www.arifbutt.me

and course bitbucket repository:
https://bitbucket.org/arifpucit/coal-repo

Instructor: Muhammad Arif Butt, Ph.D.



7 olege o\
/o NN
$ %\
§ QY 2
e s

-

& Today’s Agenda
Recap: GNU Debugger (gdb)

* Download and Configure PEDA plugin

of

Y7
=
=)

* Demo (example.nasm)

Instructor: Muhammad Arif Butt, Ph.D. 2



Recap: GNU Debugger (gdb)

* A debugger 1s a program running another program (gdb, radare2, IDA,
Immunity debugger, Softice, ...)

* GDB is a portable debugger that can
o handle the assembly of processors like IA-32, x86-64, arm, mips, sparc ...
O rtun on most popular UNIX and Microsoft Windows variants, as well as on Mac OS

o work for many programming languages including Assembly, C/C++, Objective C,
OpenCL, Go, Modula-2, Fortran, Pascal and Ada

* During this course, we have used GDB’s CLI and TUI to understand what is
going on inside our assembly programs while they execute and manipulating the
flow of program execution

* We can use GDB for reverse engineering, cracking binaries and exploit
development as well, however, gdb do not have commands for exploit
development and has weak scripting support

* So to enhance the fire power of gdb for analyzing, exploiting and doing reverse
engineering on executables, hackers use a gdb plug-in called PEDA (Python

Exploit Development Assistance)

Instructor: Muhammad Arif Butt, Ph.D. 3



Download and Use PEDA Plugin

* Python Exploit Development Assistance (PEDA) i1s like an add-
on/extension/plugin for GDB used extensively in exploit development, available
only on Linux and supported by gdb 7 .x and Python 2.6+

* Visit: https://github.com/longld/peda

* Download and install PEDA:

$ git clone https://github.com/longld/peda.git ~/peda
$ echo "source ~/peda/peda.py” >> ~/.gdbinit

e Usage:
S gdb <executable>
gdb-peda$

Instructor: Muhammad Arif Butt, Ph.D. 4



Downloading PEDA

Instructor: Muhammad Arif Butt, Ph.D. >




‘&) Example: Visualizing Stack using gdb-peda

; COAL Video Lecture: 41 0x1122334455667788 | Ox7fffffffffff
; example.nasm Hi address
SECTION . text 0xbbbbbbbbbbbbbbbb Stack grow
towards smaller
global _start Oxaaaaaaaaaaaaaaaa addresses
_start:

0x8877665544332211 < 'SP
====) MOV rax, 255

=) XOX rax, rax
===) push 65 ; 0x41 (‘A’) 0x0000000000000042 | === TrSD
=== push 66 ; 0x42 ('B’) 0x0000000000000043 | —guumm ISP
=) push 67 ; 0x43 ('C’)
=) pop rll
=) POp rl2
=) pop rl3

;exit gracefully * In a process logical address space, the stack is at the top
== mov rax, 60 of memory and grows from higher memory addresses to

lower memory addresses in architectures like Intel,
MIPS, Motorola, SPARC

0x0000000000000041 | <t rsp

Low address

mov rdi, O

syscall * The stack pointer rsp always contains address of
current top of stack, i..e., it points to the last inserted
item
e All the push/pop on the stack are 8 Bytes wide on
x86 64

Instructor: Muhammad Arif Butt, Ph.D. 6



&) Assembling & Executing x86-64 Program

Instructor: Muhammad Arif Butt, Ph.D. /



0.k., and nowyou'll do
exactly what I'm telling you !

Coming to office hours does NOT mean you are academically week!

Instructor: Muhammad Arif Butt, Ph.D. 8



