
Lecture # 41
GDB with PEDA Plugin

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data   

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text   
main:      

mov rax,1      
mov rdi,1       
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60      
mov rdi,0      
syscall

0:  b8 01 00 00 00       
5:  bf 01 00 00 00       
a:  48 be 00 00 00 00 00 
11: 00 00 00   
14: ba 1b 00 00 00       
19: 0f 05 
1b: b8 3c 00 00 00       
20: bf 00 00 00 00 
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.
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Solution: multiplex, using an instruction register
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Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g.  a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g.  out) 
q Internal pins (e.g.  nota, notb, aAndNotb, notaAndb)
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Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

For resources visit my personal website:
https://www.arifbutt.me
and course bitbucket repository:
https://bitbucket.org/arifpucit/coal-repo



• Recap: GNU Debugger (gdb)
• Download and Configure PEDA plugin
• Demo (example.nasm)
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Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.
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Recap: GNU Debugger (gdb)

Instructor: Muhammad Arif Butt, Ph.D.

• A debugger is a program running another program (gdb, radare2, IDA,
Immunity debugger, Softice, …)

• GDB is a portable debugger that can
o handle the assembly of processors like IA-32, x86-64, arm, mips, sparc …
o run on most popular UNIX and Microsoft Windows variants, as well as on Mac OS
o work for many programming languages including Assembly, C/C++, Objective C,

OpenCL, Go, Modula-2, Fortran, Pascal and Ada
• During this course, we have used GDB’s CLI and TUI to understand what is

going on inside our assembly programs while they execute and manipulating the
flow of program execution

• We can use GDB for reverse engineering, cracking binaries and exploit
development as well, however, gdb do not have commands for exploit
development and has weak scripting support

• So to enhance the fire power of gdb for analyzing, exploiting and doing reverse
engineering on executables, hackers use a gdb plug-in called PEDA (Python
Exploit Development Assistance)
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Download and Use PEDA Plugin

Instructor: Muhammad Arif Butt, Ph.D.

• Python Exploit Development Assistance (PEDA) is like an add-
on/extension/plugin for GDB used extensively in exploit development, available
only on Linux and supported by gdb 7.x and Python 2.6+

• Visit: https://github.com/longld/peda
• Download and install PEDA:
$ git clone https://github.com/longld/peda.git ~/peda
$ echo ”source ~/peda/peda.py”  >>  ~/.gdbinit

• Usage:
$ gdb <executable>
gdb-peda$
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Demo

Downloading PEDA
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0x1122334455667788

0xbbbbbbbbbbbbbbbb

0xaaaaaaaaaaaaaaaa

0x8877665544332211

Stack grow 
towards smaller 
addresses

0x0000000000000041

Example: Visualizing Stack using gdb-peda
; COAL Video Lecture: 41
;  example.nasm
SECTION .text  

global _start
_start:   

mov rax, 255   
xor rax, rax
push 65  ; 0x41 (‘A’)
push 66  ; 0x42 (‘B’)
push 67  ; 0x43 (‘C’)
pop r11   
pop r12   
pop r13   

;exit gracefully   
mov rax, 60   
mov rdi, 0   
syscall

• In a process logical address space, the stack is at the top
of memory and grows from higher memory addresses to
lower memory addresses in architectures like Intel,
MIPS, Motorola, SPARC

• The stack pointer rsp always contains address of
current top of stack, i..e., it points to the last inserted
item

• All the push/pop on the stack are 8 Bytes wide on
x86_64

0x0000000000000042
0x0000000000000043

0x7fffffffffff
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Demo

41/example.nasm

Assembling & Executing x86-64 Program
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Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!


