
Lecture # 41
GDB with PEDA Plugin

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

For resources visit my personal website:
https://www.arifbutt.me
and course bitbucket repository:
https://bitbucket.org/arifpucit/coal-repo

• Recap: GNU Debugger (gdb)
• Download and Configure PEDA plugin
• Demo (example.nasm)

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Recap: GNU Debugger (gdb)

Instructor: Muhammad Arif Butt, Ph.D.

• A debugger is a program running another program (gdb, radare2, IDA,
Immunity debugger, Softice, …)

• GDB is a portable debugger that can
o handle the assembly of processors like IA-32, x86-64, arm, mips, sparc …
o run on most popular UNIX and Microsoft Windows variants, as well as on Mac OS
o work for many programming languages including Assembly, C/C++, Objective C,

OpenCL, Go, Modula-2, Fortran, Pascal and Ada
• During this course, we have used GDB’s CLI and TUI to understand what is

going on inside our assembly programs while they execute and manipulating the
flow of program execution

• We can use GDB for reverse engineering, cracking binaries and exploit
development as well, however, gdb do not have commands for exploit
development and has weak scripting support

• So to enhance the fire power of gdb for analyzing, exploiting and doing reverse
engineering on executables, hackers use a gdb plug-in called PEDA (Python
Exploit Development Assistance)

4

Download and Use PEDA Plugin

Instructor: Muhammad Arif Butt, Ph.D.

• Python Exploit Development Assistance (PEDA) is like an add-
on/extension/plugin for GDB used extensively in exploit development, available
only on Linux and supported by gdb 7.x and Python 2.6+

• Visit: https://github.com/longld/peda
• Download and install PEDA:
$ git clone https://github.com/longld/peda.git ~/peda
$ echo ”source ~/peda/peda.py” >> ~/.gdbinit

• Usage:
$ gdb <executable>
gdb-peda$

5Instructor: Muhammad Arif Butt, Ph.D.

Demo

Downloading PEDA

6Instructor: Muhammad Arif Butt, Ph.D.

0x1122334455667788

0xbbbbbbbbbbbbbbbb

0xaaaaaaaaaaaaaaaa

0x8877665544332211

Stack grow
towards smaller
addresses

0x0000000000000041

Example: Visualizing Stack using gdb-peda
; COAL Video Lecture: 41
; example.nasm
SECTION .text

global _start
_start:

mov rax, 255
xor rax, rax
push 65 ; 0x41 (‘A’)
push 66 ; 0x42 (‘B’)
push 67 ; 0x43 (‘C’)
pop r11
pop r12
pop r13

;exit gracefully
mov rax, 60
mov rdi, 0
syscall

• In a process logical address space, the stack is at the top
of memory and grows from higher memory addresses to
lower memory addresses in architectures like Intel,
MIPS, Motorola, SPARC

• The stack pointer rsp always contains address of
current top of stack, i..e., it points to the last inserted
item

• All the push/pop on the stack are 8 Bytes wide on
x86_64

0x0000000000000042
0x0000000000000043

0x7fffffffffff

7Instructor: Muhammad Arif Butt, Ph.D.

Demo

41/example.nasm

Assembling & Executing x86-64 Program

8

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

