
Lecture # 44
C-Function Calling Convention & FSF

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

For resources visit my personal website:
https://www.arifbutt.me
and course bitbucket repository:
https://bitbucket.org/arifpucit/coal-repo

• Recap:
– The x86 call and ret instructions
– Passing Arguments in x86-64 Assembly Language

• C-Function Calling and the Run-Time Stack
– Function Stack Frame (FSF)
– Nested Function Calls
– Growing and Shrinking of Stack
– Content of FSF
– Creation and Removal of FSF

• FSF of a C-Function on x86-64 running Linux OS
– Demo (func_calling.c)

• Stack Based Buffer Overflow
– Demo (bufferoverflow.c)

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Recap

Instructor: Muhammad Arif Butt, Ph.D.

4Instructor: Muhammad Arif Butt, Ph.D.

0x1122334455667788

0xbbbbbbbbbbbbbbbb

0xaaaaaaaaaaaaaaaa

0x8877665544332211

Stack grow
towards smaller
addresses

<return address>

Calling and Returning from Assembly Functions
; COAL Video Lecture: 42
; proc1.nasm
SECTION .data

msg db ”PUCIT", 0xA
len_msg equ $ - msg

SECTION .text
global main
global printmsg

main:
call printmsg
mov rax,60
mov rdi, 0
syscall

printmsg:
mov rax, 1
mov rdi,1
mov rsi,msg
mov rdx,26
syscall
ret

push rip
jmp printmsg

pop rip

5Instructor: Muhammad Arif Butt, Ph.D.

Passing Argument and Returning Values
• The agreement on how to pass parameters and return values, and how to share CPU

registers between caller and callee is called calling convention
• In the 16 and 32 bit days, since there were only eight general purpose registers,

therefore, all the parameters were passed via stack in reverse order. This makes the
function’s first parameter on top of the stack before making the call

• On x86-64, Linux, Solaris and Mac OS use a function call protocol called the
System-V AMD64 ABI. In which first six integer parameters are passed via
registers and first eight floating point parameters via xmm0 to xmm7 registers (rest
on the runtime stack). The rax register is used to return integer values and xmm0
register to return floating point values Parameter Qword Dword

1 rdi edi
2 rsi esi
3 rdx edx
4 rcx ecx
5 r8 r8d
6 r9 r9d
>6 Stack Stack

6

C Function Calling
&

The Run-Time Stack

Instructor: Muhammad Arif Butt, Ph.D.

7

The Run-Time Stack

Instructor: Muhammad Arif Butt, Ph.D.

• In high level programming languages like C and C++, the
values passed by the caller to the callee are called
arguments. When the values are received by the called
subroutine, they are called parameters

long foo(char ch, long b){
//do some processing
return 0;

}
int main(){
foo(‘A’, 54);
exit(0);

}

• A Function Stack Frame (FSF) or Activation Record is a stack data structure that
is used to store all data on the stack associated with one function. The code for the
maintenance of the call stack is generated by high level language compilers

Parameters

Arguments

Caller

Callee

Heap
Data Section
Code Section

FSF main()

FSF f1()

hi addr

low addr

Stack grows
towards
smaller
addresses

8

Growing/Shrinking of Run-Time Stack

Instructor: Muhammad Arif Butt, Ph.D.

int main(){
f1(54);
return 0;

}
long f1(long a){
f2();
return 0;

}
void f2(){
f3();
return;

}
void f3(){
return;

}

Heap
Data Section
Code Section

FSF main()
hi addr

low addr

Stack grows
towards
smaller
addresses

FSF f1()

FSF f2()

FSF f3()

The Function Stack Frame (FSF) of a function is created on
the stack when a function is called and removed from the stack
when a function returns

9Instructor: Muhammad Arif Butt, Ph.D.

On x86-64 running Linux Operating System, the
contents of FSF for a function contains:
1. Function arguments (if greater than 6)

2. Return address of caller
3. The current contents of rbp register

4. Space for function local variables

Heap
Data Section
Code Section

FSF main()

FSF foo()

Function arguments > 6

Return Address

Base Pointer

Function
Local Variables

hi addr

low addr

Contents of Function Stack Frame

FSF

10Instructor: Muhammad Arif Butt, Ph.D.

FSF: Scuba Diving

Heap
Data Section
Code Section

FSF main()

hi addr

low addr

Stack grows
towards
smaller
addresses

Function Arguments

Return Address

rbp

Local Variables

On x86-64 running Linux Operating System, the FSF for
a function is created by the following sequential steps:
o The function arguments (>6) are pushed on the stack

by the caller
o The contents of rip (return address) is also pushed

on the stack
After that, control is shifted to the first instruction of the
callee, which performs a procedure prolog:
PUSH rbp
MOV rbp, rsp
SUB rsp, 0X20
When callee is done with its execution, it first cleans up
the FSF and then calls the return statement to transfer
control to its caller by performing a procedure epilog:

LEAVE

RET

rsp

rbp

rbp

rsp

MOV rsp, rbp
POP rbp

POP rip

11Instructor: Muhammad Arif Butt, Ph.D.

FSF on x86-64 Running Linux OS

r9: 0x46
r8: 0x45

rcx: 0x44
rdx: 0x43
rsi: 0x42
rdi: 0x41

long foo(long a, long b, long c, long d, long e,
long f, long g, long h){

//some computation is done
return 1;

}

int main(){
long rv =foo(0x41,0x42,0x43,0x44,0x45,0x46,0x47,0x48);
return rv;

}

The 8th and the 7th arguments are pushed on the stack from right
to left, and the remaining six arguments are moved inside
following registers:

0x47

0x48

12Instructor: Muhammad Arif Butt, Ph.D.

Demo

44/func_calling.c

FSF on x86-64 Running Linux OS

13

Stack Based Buffer Overflow

Instructor: Muhammad Arif Butt, Ph.D.

14

Stack Based Buffer Overflow

Instructor: Muhammad Arif Butt, Ph.D.

Stack grows
towards
smaller
addresses Function Arguments

FSF main()

Return Address

Base Pointer

Address of Local
variable buff

Buffer ends here

Writing in
buff grows
towards
higher
addresses

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

hi addr

low addr

void f1(char* data)
{
char buff[48];
strcpy(buff, data);
printf("%s\n", buff);
return;

}
int main(int argc, char*argv[])
{
f1(argv[1]);
exit(0);

}

FSF of
f1()

AAAAAAAA
AAAAAAAA<addr of malicious code>

15Instructor: Muhammad Arif Butt, Ph.D.

Demo

44/bufferoverflow.c

Understanding Stack Based Buffer Overflow

16

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

