
1

Lecture # 1.3
Git & GitHub for Data Scientists

• Overview and Types of Version Control Systems
– Local Data Model

– Centralized Data Model

– Distributed Data Model

• Overview & Working of git

• Branching & Merging
– Overview of git branches

– Merge branches

– Handling merge conflicts

• Web Portals & Cloud Hosting Services for git
– Creating remote repository, uploading files and inviting collaborators

– Cloning a remote repo from gitHub

– Pushing a local repo to GitHub

– Fetch vs Pull

– Forking a repo from GitHub

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3Instructor: Muhammad Arif Butt, Ph.D.

Overview and Types:

Version Control

System

4

Overview of Revision/Version Control System

Instructor: Muhammad Arif Butt, Ph.D.

• A Version Control System is a software tool that records changes to a file

or a set of files over time, so that you can recall specific versions later.

File

File.version1

File.version3

File.version2

VCS allows to maintain history of

different versions of a file

To move back and forth between

these versions

Compare different versions

Merge multiple versions of same

file

Lock other users when one user is

altering a file

5

Local Data Model

Instructor: Muhammad Arif Butt, Ph.D.

A local VCSs maintains a version

database that keep track of all the

changes made to file(s)

By applying the change sets you can

move from one file version to the other

Source Code Control System (SCCS-1972)

• It was written in C, developed by AT&T and

was for UNIX only

• It just save the snapshot of the changes, If you

want ver.3 of a file, you take ver.1 of the file and

apply two set of changes to it to get to ver.3

File.version1

File.version3

File.version2
File

Version Database

Local Computer

Revision Control System (RCS-1982)

• It was written in C, developed at Purdue

University, and other than UNIX works on PCs

as well

• RCS keeps the most recent version of a file in its

whole form and if you want a previous version,

you make changes to the latest version to re-

create the older version

Limitations of Local VCSs:

• You can track changes in a single file

• Only one user can work with a file at a single

time, team members cannot collaborate and work

on the same project

6

Centralized Data Model

Instructor: Muhammad Arif Butt, Ph.D.

In central VCSs, there is a server machine that contains the version database (repository)

which keeps track of number of clients working on those file(s)

File

Central CVS Server
Computer A

Concurrent Version System (CVS-1990)

• Written in C, is open source, and

available for UNIX and MS OSs

• Introduced the idea of branching

• CVS lack atomic operations

• File renaming not possible as CVS

cannot track directories

File

Computer B

Database

File.version1

File.version3

File.version2

Apache Subversion System (SVN-2000)

• Written in C, is open source, is cross

platform and is faster than CVS

• Supports atomic commits

• Can track directories, so you can

rename files within directories

• It can also track non-text files like

images

Limitations of Centralized VCSs:

• Single point of failure as the centralized server containing

the version database may crash

• No collaboration if server is down

7

Distributed Data Model

Instructor: Muhammad Arif Butt, Ph.D.

Server Computer

Computer BComputer A

• In a DVCS, clients don’t just check out the latest snapshot of the files; they fully mirror the

entire repository (version database).

• Each developer works with his own local repository and changes are finally pushed or

committed on the remote repository as a separate step.

Database

File.version1

File.version3

File.version2

Database

File.version1

File.version3

File.version2

Database

File.version1

File.version3

File.version2

8

3- Distributed Data Model (cont..)

Instructor: Muhammad Arif Butt, Ph.D.

Bitkeeper -2000
It was written in C, and is

proprietary and closed source

Bitkeeper with limited

functionalities was free and

used to manage Linux Kernel

git -2005
Developed by Linus Torvald in

2005, is free and open source

It is compatible with all UNIX-

like systems & MS Windows,

written in C, TCL, Perl &

python

In 2005, the “community

version of bitkeeper” stopped

being free and

it was then git was born

Cons:

• More space occupied on local disk of user

• More load on network while checking out project

in local repository and committing project in

remote repository

Pros:

• Faster speed

• No risk of loosing history, as every user has

complete mirror of repository

https://git-scm.com/

9Instructor: Muhammad Arif Butt, Ph.D.

Overview &

Working of Git

10

Downloading & Installation

Instructor: Muhammad Arif Butt, Ph.D.

https://git-scm.com

sudo apt-get install git

which git

git version

git help <git/tutorial/everyday>

➢On Linux

You can Download git from official website

Or Download & install git using this command

Confirm the installation

To get help about any command or any concept

➢On Windows

Git for Windows installer

git version

git help

You can Download git GUI, CMD & bash

interfaces

Confirm the installation

To get help about any command or any concept

https://git-scm.com/
https://git-for-windows.github.io/

11

Downloading & Installation

Instructor: Muhammad Arif Butt, Ph.D.

12

GIT: GUI-Clients

Instructor: Muhammad Arif Butt, Ph.D.

SourceTree
Platforms: Mac, Windows

Price: Free

License: Proprietary

GitHub Desktop
Platforms: Mac, Windows

Price: Free

License: MIT

GitKraken
Platforms: Mac, Windows, Linux

Price: Free/Paid

License: Proprietary

TortoiseGit
Platforms: Windows

Price: Free

License: GNU GPL

Git-Cola
Platforms: Mac, Windows, Linux

Price: Free

License: GNU GPL

13

Git Configuration

Instructor: Muhammad Arif Butt, Ph.D.

➢ System Configuration

/etc/gitconfig

➢ User Configuration

https://git-scm.com

$ git config –-global user.name “Arif Butt”

$ git config –-global user.email “arif@pucit.edu.pk”

$ git config --global core.editor “vim”

$ git config --global --list

$ cat ~/.gitconfig

You can check values of

these configurations using

these commands

User

Configuration

Attributes

~/.gitconfig

➢ Project Configuration

<proj>/.git/config

https://git-scm.com/

14

Basic Workflow of git

Instructor: Muhammad Arif Butt, Ph.D.

Working
Directory

Staging
Index

Local
Repository

Local

git add

git commit

git init

Working directory is any

directory on your file

system that has a a

subdirectory named .git

inside it

Staging Index is an intermediate

area, changes doesn’t commit

directly from the working tree to

repository. Instead changes are

first made in the staging index

Repository or object store

holds the changes in your

source code over time as

you perform commit ops

• File creation

• Modification

• Deletion/Rename

• Ignore files

15

Initialization & Life Cycle of file in git

Instructor: Muhammad Arif Butt, Ph.D.

Initializing git

$ git init

After configuration, next step is to initialize

repository. It will make a hidden folder named .git

in this directory. This is your local versioning

database that track all the files/ inside the root

directory of your project folder

Tracked files: All the

files which have been

added at least once,

or the files that were

there in the last

snapshot

• Unmodified

• Modified

• Staged

This will tell which files are tracked and which

are un-tracked

$ git status

$ git add <filename>

Untracked files: All the

files in the working

directory that have never

been part of repository

and are not even in the

staging area

Initialize Repository

Create some files and

add one to Staging

Index

16

Commit file & view commit log

Instructor: Muhammad Arif Butt, Ph.D.

$ git commit –m “message”
After adding all files to staging area

now they are ready to commit

$ git log [--oneline][--author=“name”]

commit <sha of commit o/p as 40 hex digits>

Author: username <email>

Date: <date and time>

<commit message>

You can check log of commits and

by whom it is committed

It will show you list of all commits

in the following format:

Check log

17

Basic Workflow of git

Instructor: Muhammad Arif Butt, Ph.D.

Demonstration

18

Commit objects and Head pointer in git

Instructor: Muhammad Arif Butt, Ph.D.

231a5…

Parent: nil

Author: arif

Msg: initial

commit

Timestamps:...

5ac27…

Parent:231a5..

Author: arif

Msg: 2nd

commit

Timestamps:...

1e3f5…

Parent:5ac27..

Author: arif

Msg: 3rd

commit

Timestamps:...

Suppose we have made three commits in our

project, that means there are three change sets.

Each commit object refers to a change set.

Change set A Change set B Change set C

Checksum generated through

Secure Hash Algorithm

231a5…

5ac27…

1e3f5…

231a5…

5ac27…231a5…

HEAD

HEAD

HEAD

git maintains a reference variable called HEAD,

which points to a specific commit in repo

As we make a new commit the HEAD

moves to point the next commit

$ cat .git/HEAD

refs/heads/master

$ cat .git/refs/heads/master

5ac27..

19

Edit, Delete a File in git Repo

Instructor: Muhammad Arif Butt, Ph.D.

We have already created a file

README, added in staging

index and then committed it to

the repo. Make changes in the

file and check status.

You again need to add and

commit the file

➢ Edit File

➢ Delete File
Option 1: Move the file out

from the working dir into trash

and then tell git about it

$ rm f1.txt

$ git add f1.txt

$ git commit –m “deleted”

$ git rm f1.txt

$ git commit –m “deleted”

Option 2: Tell git to remove the

file and add it to staging index in

a single command

Check status

20

Rename a File in git Repo

Instructor: Muhammad Arif Butt, Ph.D.

➢ Rename file

Then come back and tell git about

those changes

$ mv f1.txt newf1.txt

$ git add newf1.txt

$ git rm f1.txt

$ git commit –m “rename”

$ git mv f1.txt newf1.tx

$ git commit –m “renamed”

Option 2: Move/rename file

from git command line.

Option 1: Move or rename files

using the GUI file browser or file

system commands.

21

Ignoring Files in git

Instructor: Muhammad Arif Butt, Ph.D.

Write files/directories names to be ignored in a text file.

Git normally checks gitignore patterns from multiple sources, with the

following order of precedence:

• The patterns read from a file named .gitignore in the same directory or

in any parent directory upto the top level of the working tree.

• The patterns read from .git/info/exclude file in the project

directory.

• The patterns read from file specified by the configuration variable
core.excludesFile

*.o

*.tar.gz

*.log

*.[oa]

*.exe

myexe

logs/**

dir1/

$ git config –global core.excludesfile ~/.abc

22

Moving to a Previous Commit

Instructor: Muhammad Arif Butt, Ph.D.

• Head is moved to specific commit ID

• No changes are made in the staging

index and working directory

➢ Soft Reset

$ git reset --soft <Commit ID>

• Head is moved to specific commit ID

• Staging index is also changed to

match the local repository

• No changes are made in the working

directory

➢Mixed Reset

$ git reset --mixed <Commit ID>

• Head is moved to specific commit ID

• Staging index and working directory

both match the local repository

➢ Hard Reset

$ git reset --hard <Commit ID>

23

Edit, Delete, Rename and Ignore Files in git

Instructor: Muhammad Arif Butt, Ph.D.

Demonstration

24Instructor: Muhammad Arif Butt, Ph.D.

Branching &

Merging

25

Overview of git Branches

Instructor: Muhammad Arif Butt, Ph.D.

231a5…

5ac27…

1e3f5…

231a5…

5ac27…231a5…

HEAD

HEAD

HEAD

A git branch represents an independent

line of development

Every git repository has at least one

branch called the master branch

• Suppose you are working on a project and have done some commits on the master branch.

You think of adding a new feature to your project but you are not sure whether it will work

or not.

• OPTION 1: You continue working on the same branch

1e3f5…5ac27…231a5…

HEAD

1e3f5…5ac27…231a5…

HEAD

df65a… f97c3…

• If it is a success GR8. If it is a failure, you roll back to commit with SHA le3f5…

26

Overview of git Branches (cont..)

Instructor: Muhammad Arif Butt, Ph.D.

• OPTION 2: Create a new branch and try your new ideas there and if those ideas do not work

you just throw away that branch and your master branch continues moving ahead without any

issues

Head

f54ac…dc92a…1a2c5…

Head

1e3f5…5ac27…231a5…

Head

1e3f5…5ac27…231a5…

new-branch

• If the new branch is a success, then you need to merge your new-branch with the master branch

$ git branch <new branch>

$ git checkout <new branch>

27

Merging Branches: Fast Forward Merge

Instructor: Muhammad Arif Butt, Ph.D.

• Suppose you made a new branch and no further commits have been done on the master

branch after the creation of new-branch as shown:

f54ac…dc92a…1a2c5…

Head

Head

1e3f5…5ac27…231a5…

new-branch

f54ac…dc92a…1a2c5…

Head

1e3f5…5ac27…231a5…

$ git checkout master

$ git merge new-branch

Before you give merge command, your current

branch should be the receiving branch

Merge Master branch with new branch

• In this case, git will by default do a Fast Forward Merge

master

28Instructor: Muhammad Arif Butt, Ph.D.

• Suppose you made a new branch and no further commits have been done on the master

branch after the creation of new-branch as shown:

f54ac…dc92a…1a2c5…

Head

Head

1e3f5…5ac27…231a5…

new-branch

$ git checkout master

$ git merge –no—ff new-branch

Before you give merge command, your current

branch should be the receiving branch

Merge Master branch with new branch

• You can always force git NOT to do a fast forward merge, rather do an additional commit
merge. This can be forced by giving the --no-ff option to git merge command

master

Merging Branches: Real Merge

f54ac…

Head

dc92a…1a2c5…

1e3f5…5ac27…231a5…

new-branch

master

29

Merging Branches: Real Merge

Instructor: Muhammad Arif Butt, Ph.D.

➢ Before Merging

➢ After Merging

f54ac…

Head

dc92a…1a2c5…

1e3f5…5ac27…231a5…

new-branch

dc92a…1a2c5…

Head

1e3f5…5ac27…231a5…

new-branch

Head

In the following scenario a fast forward merge is not possible. So once you do a merge, git

will perform a real merge.

30

Handling Merge Conflicts

Instructor: Muhammad Arif Butt, Ph.D.

dc92a…1a2c5…

Head

1e3f5…5ac27…231a5…

branch1

Head

Suppose there are two branches master and branch1, both have a file f1.txt, which is of-course

similar in both. A developer on master branch edit line#25 of file1.txt and do a commit.

Another developer on branch1 edit line#50 of file1.txt and do a commit

Master branch

Now if you merge, it will be a success, because both have made changes to same file, but to

different lines. However, if both the developers have made changes to same line or set of lines a

conflict will occur, which git cannot handle and it will give a message that auto-merging failed. In

case of a merge conflict we have three choices to resolve the conflict

• Abort merge: $ git merge –abort

• Make changes Manually: Perform changes manually in some editor, add,

commit, and finally perform merge

• Use merge tools: You can use for this purpose like araxis, diffuse, kdiff3, xxdiff,
diffmerge: $ git mergetool --tool=diffuse

31

Overview of git Branches (cont..)

Instructor: Muhammad Arif Butt, Ph.D.

➢ To Create a New Branch

$ git branch [<new-branch>]

➢ To Switch to another Branch

$ git checkout new-branch

➢ To Rename a Branch

$ git branch -m <old> <new>

➢ To Delete a Merged Branch

$ git branch -d <branch-name>

➢ To Delete an Un-merged Branch

$ git branch -D <branch-name>

➢ To Compare two Branches Branch

$ git diff <branch1> <branch2>

32

Branches in git

Instructor: Muhammad Arif Butt, Ph.D.

Demonstration

33Instructor: Muhammad Arif Butt, Ph.D.

Web Portals & Cloud

Hosting Services for git

34

Concept of Remote Repository

Instructor: Muhammad Arif Butt, Ph.D.

Working
Directory

Staging
Index

Local
Repository

Local

git add

git commit

git init
• File creation

• Modification

• Deletion/Rename

• Ignore files

Remote
Repository

Remote

Internet

git clone <URL>

git push origin master

git remote add origin URL

35

Hosting Services for git Repositories

Instructor: Muhammad Arif Butt, Ph.D.

The way there are different web hosting services available on the Internet

cloud, similarly there are hosting services available for repositories of

distributed versioning systems as well

GitHub is a web-

based hosting

service for git

repositories. It

offers all of Git’s

DVCS SCM and

has some

additional features

GitHub includes

collaboration

functionality like

project

management,

support ticket

management, and

bug tracking.

With GitHub,

developers can

share their

repositories, access

other developers’

repositories, and

store remote copies

of repositories to

serve as backups.

https://bitbucket.org/product/
https://github.com/
https://about.gitlab.com/

36Instructor: Muhammad Arif Butt, Ph.D.

Creating a Remote

Repository on GitHub

37

Creating a Personal Account on GitHub

Instructor: Muhammad Arif Butt, Ph.D.

To create your repositories on GitHub or contribute to other open source projects, you will

need to create a personal account GitHub

38

Login into your GitHub Account

Instructor: Muhammad Arif Butt, Ph.D.

39

Creating a Remote Repository on GitHub

Instructor: Muhammad Arif Butt, Ph.D.

Once you are logged in and are on the homepage, you will

notice a button, that will let you to create your own Repository

Once you click on the ‘New’

button, GitHub will redirect you

to a different page where you

will have to provide a name for

the repository. Additionally, you

can add a description of your

repository.

40

Public & Private Repositories

Instructor: Muhammad Arif Butt, Ph.D.

Besides providing a name and description, you need to choose

whether you want your repository to be public or private.
Public repository is accessible to

anyone. Anyone is able to see the

codebase and clone this repository

to their local machine for use.

Private repository, on the other hand, is

only visible to people who you have

chosen. No other person is able to view it.

Another decision you will have to

make while creating a new

repository is whether or not you’ll

create a README file.

Finally, you will be able to choose

whether or not you want a .gitignore

file. The purpose of the .gitignore file

is to filter out files and subdirectories

in your repository that you do not

want Git to keep track of.

Create Repo

41

Invite Collaborators

Instructor: Muhammad Arif Butt, Ph.D.

You can decide and manage, who can access your private repository and

make collaboration. 1- After creating a private

repo, click the settings tab

2- go to the Manage access

3- Invite Collaborators

via email or username

42

Working with GitHub Repositories

Instructor: Muhammad Arif Butt, Ph.D.

Demonstration

https://github.com/arifpucit

43Instructor: Muhammad Arif Butt, Ph.D.

Clone a Remote

Repository

44

Cloning Remote Repo to Local Repo

Instructor: Muhammad Arif Butt, Ph.D.

Working
Directory

Staging
Index

Local
Repository

Local

Remote
RepositoryInternet

git clone <URL>

Remote

We can use the
git clone

command to copy

the entire codebase

of a project from a

remote repository

and set it up as a

local repository on

our machine

45

Clone Remote Repo in Local Repo

Instructor: Muhammad Arif Butt, Ph.D.

1- Go to the existing repo (public)

2- Click the Code drop

down button

3- Copy the link
4- Open a terminal on your

machine and paste the link in
front of git clone

46Instructor: Muhammad Arif Butt, Ph.D.

Push local Repo to

Remote Repo

47

Pushing a Local Repo to Remote Repo

Instructor: Muhammad Arif Butt, Ph.D.

Working
Directory

Staging
Index

Local
Repository

Local

git add

git commit

git init

Remote
Repository

Remote

git push origin master

Internet

git remote add origin URL

When you create

a remote

repository on

GitHub, it will

initially be empty.

You will need a

way to get your

local repository to

the remote

repository on

GitHub

48

Pushing a Local Repo to Remote Repo

Instructor: Muhammad Arif Butt, Ph.D.

1- Copy URL of remote repo

from gitHub

4 – Verify that local repo has

been pushed on Remote Repo

2- Connect local repository

with remote repository

3 – Upload local code and its

revision history to the remote repo

49Instructor: Muhammad Arif Butt, Ph.D.

Fetch vs Pull

50

Git Fetch

Instructor: Muhammad Arif Butt, Ph.D.

Working
Directory

Staging
Index

Local
Repository

Local

git add

git commit

git init

Remote
RepositoryInternet

git fetch origin

git clone <URL>

Remote

git fetch tells

your local git to

retrieve the latest

meta-data info

from the the

remote repo, i.e.,

it does not make

any changes to the

working directory

in the local repo

51

Git Pull

Instructor: Muhammad Arif Butt, Ph.D.

Working
Directory

Staging
Index

Local
Repository

Local

git add

git commit

git init

Remote
Repository

git pull origin master

Internet

git clone <URL>

Remote

git pull

performs two

operations
git fetch

git merge

So after a
git pull

your working

directory in the

local repo will

also be

synchronized

with the remote

repo

52Instructor: Muhammad Arif Butt, Ph.D.

Clone vs Fork

53

Fork a Repository from GitHub

Instructor: Muhammad Arif Butt, Ph.D.

• Forking means creating a copy of complete repo from some one else’s GitHub account

on your GitHub account. You can do this to collaborate on a open source project, or use

the existing state of the project as a starting point for your own project

✓ On GitHub navigate to someone’s repository that you want to fork, and click the

Fork button, then check the repository availability on your GitHub account.

✓ Clone this repo on your local machine, make a new branch, fix a bug, add/enhance

a functionality, and then push it back to your own remote repo

✓ Finally click pull request to open a new pull request to the actual project owner

Click the fork

button

54

Collaborating with Open Source Projects

Instructor: Muhammad Arif Butt, Ph.D.

Demonstration

https://github.com/arifpucit/data-science.git

55Instructor: Muhammad Arif Butt, Ph.D.

GitHub Gists

56

Overview of Revision/Version Control System

Instructor: Muhammad Arif Butt, Ph.D.

57

Overview of Revision/Version Control System

Instructor: Muhammad Arif Butt, Ph.D.

58

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically weak!

• Install git on your machine and practice working on a local

repository by performing lots of commits, create branches

and merge them

• Create your GitHub account using your RollNo and

official email ID

• Create a private repository and share it with myself and

your friends

• Create a local repository on your machine and do lot of commits on it. Create an

empty remote repository on your GitHub account. Finally push your local repository

on GitHub repository.

• Clone https://github.com/arifpucit/data-science repository, make improvements in it

and see if you can push/submit those changes to this public repository of mine

• Fork https://github.com/arifpucit/data-science repository, clone it, fix any bugs or

improve documentation and submit a pull request to the repository owner

https://github.com/arifpucit/data-science
https://github.com/arifpucit/data-science

