
C-Refresher: Session 01
GNU GCC Compiler

Arif Butt
Summer 2017

I am Thankful to my student Muhammad Zubair bcsf14m029@pucit.edu.pk for preparation of
these slides in accordance with my video lectures at

http://www.arifbutt.me/category/c-behind-the-curtain/

mailto:bcsf14m029@pucit.edu.pk
http://www.arifbutt.me/category/c-behind-the-curtain/

Today’s Agenda

• Brief Concept of GNU gcc Compiler

• Compilation Cycle of C-Programs

• Contents of Object File

• Multi-File Programs

• Linking Process

• Libraries

Muhammad Arif Butt (PUCIT) 2

Compiler
Compiler is a program that transforms the
source code of a high level language into
underlying machine code.
Underlying machine can
be x86 sparse, Linux,
Motorola.

Types of Compilers:
gcc, clang, turbo C-compiler, visual C++…

Muhammad Arif Butt (PUCIT) 3

GNU GCC Compiler
•GNU is an integrated distribution of compilers for
C, C++, OBJC, OBJC++, JAVA, FORTRAN
• gcc can be used for cross compile
Cross Compile:
• Cross compile means to generate machine code for
the platform other than the one in which it is
running
• gcc uses tools like autoConf, automake and lib to
generate codes for some other architecture

Muhammad Arif Butt (PUCIT) 4

Compilation Process

Four stages of compilation:

•Preprocessor
•Compiler
•Assembler
•Linker

Muhammad Arif Butt (PUCIT) 5

Compilation Process(cont...)
hello.c

Preprocessor

Compiler

Assembler

Linker

hello.i

gcc –E hello.c 1>hello.i

1. Preprocessor
• Interpret Preprocessor

directives
• Include header files
• Remove comments
• Expand headers

Muhammad Arif Butt (PUCIT) 6

Compilation Process(cont...)
hello.c

Preprocessor

Compiler

Assembler

Linker

hello.i

gcc –S hello.i

2. Compiler
• Check for syntax errors
• If no syntax error, the

expanded code is converted to
assembly code which is
understood by the underlying
processor, e.g. intel x86, AMD
x86, SUN SPARC, ULTRA
SPARC, ARM, Cell, Power PC,
Motorola, MIPS

hello.s

Muhammad Arif Butt (PUCIT) 7

Compilation Process(cont...)
hello.c

Preprocessor

Compiler

Assembler

Linker

hello.i

gcc –c hello.s

3. Assembler
• Assembler converts the assembly

code to the machine dependent
opcode

• Each object file contains a table
known as symbol table which
contains
• Name, type and relative

addresses of global variables
• Name and relative addresses of

functions defined in the
program

• Name of external functions like
printf()

hello.s

hello.o

Muhammad Arif Butt (PUCIT) 8

Compilation Process(cont...)
hello.c

Preprocessor

Compiler

Assembler

Linker

hello.i

gcc hello.o

4. Linker
• Linker links a collection of object

module(s) and libraries as input
and combines them to produce a
single executable

• It takes the symbol table of all
.o files, that you have created,
and combines them to create a
global symbol table

• In case of a single source file, it
links with appropriate functions of
the standard C library implicitly

hello.s

hello.o

a.out
Muhammad Arif Butt (PUCIT) 9

Compilation Process(cont...)
hello.c

Preprocessor

Compiler

Assembler

Linker

hello.i

hello.s

hello.o

a.out Muhammad Arif Butt (PUCIT) 10

gcc –E hello.c 1>hello.i

gcc –S hello.i

gcc –c hello.s

gcc hello.o

Compilation Process(cont...)
• Saving all files

gcc hello.c => saves only the final a.out file while all the
files created in between are deleted

gcc –save-temps hello.c =>saves all the files created
in between, i.e. hello.i, hello.s, hello.o and finally
a.out

• Name of your choice

gcc hello.c –o myexe => can be used to give a name of
your choice other than a.out like myexe here

• C++ code compilation

g++ hello.cpp => is used for compilation of C++ programs
Muhammad Arif Butt (PUCIT) 11

•Command for execution of a C program
./a.out (or if some other name of the

executable file)

Execution of C program

Why this ./
with the name

of the
executable file?

Muhammad Arif Butt (PUCIT) 12

Answer:

• The shell searches the executable file in the PATH variable

(which contains the paths of different directories

separated by column(:)) but the PATH variable generally

doesn’t contain the path of PWD(Present Working Directory)

• So there are two ways for Program Execution:

1. Add the PWD path in the PATH variable by using command

• $export PATH=$PATH:$PWD

• And then you can use only the name of the executable file to

execute the program, like a.out

Execution of C program(cont...)

Muhammad Arif Butt (PUCIT) 13

2. Use ./ before the name of the executable file. By doing

this the shell looks for the executable file in PWD

Note: First way is generally not recommended.

Muhammad Arif Butt (PUCIT) 14

Execution of C program(cont...)

•Object files cannot be read using cat, more or
less commands
•The reason is, these files are not in text
format
•They are in ELF format
•Note: file command can be used to know the
format of a file
•Syntax
•file [filename]

Reading Object Files

Muhammad Arif Butt (PUCIT) 15

• Commands used for reading files of ELF format are:
• readelf
• od
• objdump

readelf
• This command is used to read the contents of an a.out

(executable) file or some other ELF file
Syntax
readelf [option(s)] [argument(s)]

Some options are:
readelf –l a.out => to read program headers (program
headers reside in only executable files not in *.o files)

Reading Object Files(cont...)

Muhammad Arif Butt (PUCIT) 16

Muhammad Arif Butt (PUCIT) 17

Reading Object Files(cont...)

Example result of readelf –l a.out

readelf –l is telling about the program type, entry point
and is showing lots of information about program headers
readelf –h hello.o => shows file headers (file
headers are in both *.o and a.out file)

Muhammad Arif Butt (PUCIT) 18

Reading Object Files(cont...)

Here it is showing
file headers of a
file namely study.o
which including
magic#, class, data,
version and lots of
other information

• There are also other options available like
• readelf –g => Displays the information contained in
the file's section groups, if it has any

• readelf –S => Displays the information contained in
the file's section headers

• readelf –t => Displays the detailed section
information

• and many more options

Muhammad Arif Butt (PUCIT) 19

Reading Object Files(cont...)

od (Octal dump)
• od command dump files in octal and other formats

• Syntax
• od [option(s)] [argument(s)]

• e.g.

• od hello.o

//shows octal dump of hello.o

• od –h hello.o

//shows hexa dump of hello.o

Reading Object Files(cont...)

Muhammad Arif Butt (PUCIT) 20

objdump (object dump)
• objdump is used to display information about object
files

• e.g.
• objdump –d hello.o

• This command is used to disassemble

• Disassembling of section .text means showing the
assembly code of underlying machine code

Muhammad Arif Butt (PUCIT) 21

Reading Object Files(cont...)

• Beginners write C-Programs in a single file containing
the main() and zero or more functions. The source
file may also contain Preprocessor directives, type
and macro definitions, variables and function
declarations

• But programs can be large! e.g., Linux-4.9 contains
about 4.3M LOCs. So large C software needs to be
divided into multiple source files

• Let’s take a very simple example to understand this

• Suppose we are to write some basic math related
functions and we want to write them in separate
files

Multifile Programs

Muhammad Arif Butt (PUCIT) 22

• To accomplish this, we have to include their header
file in the main() function file

• Let the header file name be mymath.h, now this file
has to included in the main() function file

• There are two ways of including our own header files

1. include the file using
• #include<mymath.h>

•Here the file has been included using <> symbols
so the compiler will search for the mymath.h file
in /usr/include/ directory

Muhammad Arif Butt (PUCIT) 23

Multifile Programs(cont…)

• So now in order to compile the program we have to
copy mymath.h file in /usr/include/ directory
or we have to compile the file using –I. option

• e.g. gcc *.c –I.

• This –I. option actually tells the compiler to
search for the included file in PWD

2. include the file using
• #include “mymath.h”

•Now the compiler will look for the header file in
PWD, as it has been included using “” symbols

Muhammad Arif Butt (PUCIT) 24

Multifile Programs(cont…)

•C-programs we write are often using libraries
and these libraries have to be linked with the
program for its successful compilation

•To understand this concept of linking of
libraries let’s start with an example program
which uses some library functions and so needs
the related library for its successful
compilation

Linking Process of libraries

Muhammad Arif Butt (PUCIT) 25

Muhammad Arif Butt (PUCIT) 26

Linking process of Libraries(cont…)

//mymath.c

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

int main(int argc,char* argv){

double x=atof(argv[1]);

double y=strtof(argv[2],NULL);

double and=pow(x,y);

printf(“%lf^%lf=%lf”x,y,ans);

return 0;

}

• The above code used atof(), strtof() and pow()

functions

• Now atof() and strtof() are present in the
standard C library while the pow() function is
present there in the math library so our program
needs both these libraries

• C-standard libraries are located in
/usr/lib/x86_64-linux-gnu/

• libc.so & libc.a are both the standard C
libraries with the difference that libc.so is the
dynamic version while libc.a is the static version

Linking process of Libraries(cont…)

Muhammad Arif Butt (PUCIT) 27

• gcc automatically links with dynamic version, when a library
is imported, and if it is not available, only then it goes for
the static version

• Similarly, math libraries are available by the names
libm.so and libm.a

• So to compile the above mymath.c program the command
used is

gcc mymath.c –lc –lm or gcc mymath.c –lm (as
lc is automatically linked by gcc)

• Note: To import a library use the starting character

l and then the character(s) after lib

Muhammad Arif Butt (PUCIT) 28

Linking process of Libraries(cont…)

ibl m

e.g.

Linking process of Libraries(cont…)

Muhammad Arif Butt (PUCIT) 29

Dynamic linking:
• Only a reference to the

linked libraries is placed
in the object file

• gcc mymath.c –lm

• Smaller size of object file
• e.g. size of object file of
mymath.c comes out to
be 8.6K

• Default method

Static Linking:
• The whole library code is

placed in the object file

• gcc --static mymath.c –lm

• Larger size of object file
• e.g. size of object file of
mymath.c comes out to
be 1.1M

• Not a default method has
to be explicitly specified

• There are two ways of linking of libraries:

• There are other commands available which can help
us linking of libraries

ldd:
• ldd is a command used to print shared object
dependencies

• e.g. for above mymath.c program

• gcc mymath.c –o dynamicM –lm /*will
produce dynamically linked executable file named
dynamicM*/

Muhammad Arif Butt (PUCIT) 30

Linking process of Libraries(cont…)

• ldd dynamicM //shows the following result

• linux-v dso.so.1 => (0x00007ffc329a0000)

//linked with vdso

• libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6

(0x00007fab2e66d000)

//linked with libm.so

• libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6

(0x00007fab2e2a4000)
//linked with libc.so

• /lib64/ld-linux-x86-64.so.2 (0x000055d653ab1000)

//linked with ld

Linking process of Libraries(cont…)

Muhammad Arif Butt (PUCIT) 31

 vdso
• The vdso (virtual dynamic shared object) is a small

shared library that the kernel automatically maps into
the address space of all user-space applications.
Applications usually do not need to concern themselves
with these details as the vDSO is most commonly called
by the C library. This way you can code in the normal way
using standard functions and the C library will take care
of using any functionality that is available via the vDSO

 ld
• ld is the basic gnu linker. So ld can also be used in place

of gcc for compilation of a program with few
differences

Muhammad Arif Butt (PUCIT) 32

Linking process of Libraries(cont…)

• Difference of ld from gcc

• In ld, all the libraries, including standard C libraries,
have to be linked explicitly while in gcc standard C
libraries are automatically linked

• e.g. ld mymath.h –lm

/*this will give an error message showing that
undefined reference to strtof() and atof()*/
So for successful compilation we have to use the
command
ld mymath.h –lc –lm

• ld looks for the _start symbol to start the execution
of the program while gcc looks for the main() symbol

Muhammad Arif Butt (PUCIT) 33

Linking process of Libraries(cont…)

nm
• nm is a GNU command
• nm lists the symbols from object files.

e.g. nm mymath.o //shows the following result
U atof

T main

U pow

U printf

U strtof

• If no object files are listed as arguments, nm assumes
the file a.out

• e.g. nm and nm a.out both give the same result
Muhammad Arif Butt (PUCIT) 34

Linking process of Libraries(cont…)

Muhammad Arif Butt (PUCIT) 35

