C-Refresher: Session 03 Data Representation

Arif Butt Summer 2017

 I am Thankful to my student Muhammad Zubair bcsf14m029@pucit.edu.pk for preparation of these slides in accordance with my video lectures athttp://www.arifbutt.me/category/c-behind-the-curtain/

Today's Agenda

- Data Types
- Multi-Byte Load/Store
- Fixed Point Representation
- IEEE Standard for Floating Point
- Range on Single Precision
- Precision

Data Types

A datatype, in programming, is a classification that specifies which type of value a variable can store and what type of mathematical, relational or logical operations can be applied to it without causing an error.
A string, for example, is a datatype that is used to classify text, and an int is a datatype used to classify whole numbers.

Data Types(cont...)

- Different datatypes are available in C for storing a particular type of values
- There are three types of values

1. Integer
2. Character
3. Floating Point

- Different datatypes for storing a particular type of values are shown on next slide

Different Data Types

Integer	Character	Floating Point
short	char	float
int		double
long		long double
long long		

Note: short, int, long, long long and char are both signed and unsigned

Data Types(cont...)

-Range:
-Range of values that can be occupied by different datatypes depends upon the platform, hardware (OS 32 or 64 -bit) and compiler

- The command used to measure size of different datatypes is

```
sizeof(data_type);
```


Data Types(cont...)

Dlimits.h

- There is a file limits.h which contains ranges for different datatypes
- Path of file is
-/usr/include/limits.h
- getconf
- Instead of looking at limits.h file, we can use getconf command which contains ranges of lots of parameters
\$ getconf -a

Data Types(cont...)

- getconf command can also be passed an argument to show the value of that particular argument
- e.g:

```
$ getconf CHAR_MIN
/ /-128
$ getconf CHAR_MAX //127
$ getconf UCHAR_MAX //255
```


Data Types(cont...)

//Program showing sizes of different data types \#include<stdio.h>
int main() \{

```
printf("size of char: %d\n",sizeof(char));
printf("size of short: %d\n",sizeof(short));
printf("size of int: %d\n",sizeof(int));
printf("size of long: %d\n",sizeof(long));
printf("size of long long: %d\n",sizeof(long long));
printf("size of float: %d\n",sizeof(float));
printf("size of double: %d\n",sizeof(double));
printf("size of long double: %d\n",sizeof(long double));
return 0;}
```


Data Types(cont...)

Doutput of above program:

- size of char: 1
- size of short: 2
- size of int: 4
- size of long: 8
- size of long long: 8
- size of float: 4
- size of double: 8
- size of long double: 16
- Note: These are the sizes on a x86_64 system with kernel 4.6.0-kali-amd64

Multi-Byte Load/Store

- Let's declare a variable

$$
\text { short } i=54 ;
$$

- $54_{(10)}=\underbrace{0000 \quad 0000}_{\text {}} \underbrace{0011 \quad 0110}_{\text {(2) }}$

$$
\text { Byte } 2 \quad \text { Byte } 1
$$

- Now there are more than one bytes
- There are two ways of storing these bytes in the memory
- Little Endian scheme (used in intel)
- Big Endian scheme(used in MIPS)

Multi-Byte Load/Store(cont...)

LLittle Endian:

- In Little Endian scheme, the bytes are put into the memory form right to left, i.e. the rightmost byte is put on a lower memory address and then the bytes from right to left are put in memory on consecutively higher memory addresses
- e.g.
- If we have memory addresses 100 and 101 then Byte1 will be put in 100 memory address and Byte- 2 will be put in 101

Multi-Byte Load/Store(cont...)

\square Big Endian:

- In Big Endian scheme, the bytes are put into the memory form left to right, i.e. the leftmost byte is put on a lower memory address and then the bytes from left to right are put in memory on consecutively higher memory addresses
- e.g.
- If we have memory addresses 100 and 101 then Byte1 will be put in 101 memory address and Byte-2 will be put in 100

Multi-Byte Load/Store(cont...)

- Max number of values that can be stored using n number of bits can be calculated using the formula
- $2^{\text {n }}$
- e.g.
- No. of values stored in 1 bit are 21 ,i.e. $1 \& 0$
- No. of values stored in 2 bits are 2^{2},i.e. 00,01 , 10, 11
- and so on
- Range of values that can be stored in n number of bits is given as(on next slide)

Multi-Byte Load/Store(cont...)

DFor Unsigned(n bits)

- $0->2^{n}-1$
- e.g. for 8 -bits $=>0$-> $2^{8}-1$ i.e. 0 -> 255
-For Signed(n bits)
- There are two ways:

1. Signed Magnitude:

- - ($\left.2^{\mathrm{n}-1}-1\right)->+\left(2^{\mathrm{n}-1}-1\right)$
- This way is generally not used in our computer systems due to two reasons

Multi-Byte Load/Store(cont...)

(i) Zero can be represented in two ways, i.e. we have a +ve zero 0000 and a -ve zero 1000 (as 0 represents a +ve sign and 1 represents -ve sign)
(ii) Normal Binary arithmetic rules do not apply

- e.g. adding $0001(+1)$ and $1001(-1)$ yields 1010 (2), it would rather have been 0 but its not

2. 2's Complement:

- $-2^{\mathrm{n}-1}->+\left(2^{\mathrm{n}-1}-1\right)$
- e.g. for 8 -bits $=>-128->+127$

Multi-Byte Load/Store(cont...)

- 2 's complement is used in computer systems as
- zero can be represented in one way only, i.e. 0000 (if in 4-bits)
- Binary arithmetic can be applied without any error
-e.g. adding $0001(+1)$ and $1111(-1)$ yields 0000(0)
- Note: There is an extra -ve number in 2's complement as there is only one way for representing zero

Multi-Byte Load/Store(cont...)

/*Program for getting range(s) of short datatype..may also be used for some other*/
\#include<stdio.h>
int main() \{
printf("Size of short: \%d\n", sizeof(short));
int bits=8*sizeof (short);
printf("Bits: \%d\n",bits);
int from=0;
int to $=(1 \ll$ bits $)-1 ; \quad / / 1 * 2^{\text {bits }}$
printf("Range of unsigned short is from \%d to \%d\n",from,to);
from=- (1<<bits-1) ;
to= (1<<bits-1)-1;
printf("Range of short is from \%d to \%d\n",from,to);
return $0 ;\}$

Multi-Byte Load/Store(cont...)

- Output of above program:

```
Size of short: 2
Bits: 16
Range of unsigned short is from 0 to 65535
Range of short is from -32768 to 32767
```

- Similarly, we can find range for other data types using this program as a template, i.e. replacing short with that datatype e.g. int
- These values can also be verified from /usr/include/limits.h file or using getconf command

Fixed Point Representation

- Real number can be represented in two ways
- Fixed point
- Floating point (our system uses this one)

DFixed Point Representation:

- Let's take a number $(12.6)_{10}=(1100.10011001 \ldots)_{2}$
- There are three fields in fixed point representation
- Sign(+, -)
- Integer field
- Fractional field

Fixed Point Representation(cont...)

- If we represent the number in 32-bit system

1-bit	15 -bits	16-bits
0	00000000001100	1001100110011001

Sign (0/1) Integer part
Fractional part

- Now the largest number which can be stored is given as - $\left(2^{15}-1\right)+\left(1-2^{-16}\right)=32767.9999 \approx 32768$
- Smallest number is

$$
\cdot 0+2^{-16} \approx 0.000015
$$

Fixed Point Representation(cont...)

- Advantages:
- Very fast performance as number is saved as integer
- Perform different optimizing techniques without any additional hardware
- Disadvantages:
- Operand size -- has very limited range of operand values

Floating Point Representation

- Introduced in 1985, based on scientific notation
- It has been accepted as the IEEE standard for floating point
- Current version of IEEE is IEEE 754-2008
- Storage:
- Single precision of 32-bits
- Double precision of 64-bits
- Quadruple precision of 128 -bits
- Octuplet precision of 256-bits

Sign	Exponent	Mantissa
1-bit	8 -bits	23 -bits
1-bit	11 -bits	52 -bits
1-bit	15-bits	118 -bits
1-bit	19-bits	236 -bits

Floating Point Representation(cont...)

- Sign field can be 0 or 1 i.e. + or -
- In Exponent field, base is implicit i.e. the base is 2
- The exponent can be both +ve and -ve
- To store these +ve and -ve exponents, a bias is added to the exponent, e.g.
- In case of single precision, bias value is 127
- In case of double precision, bias is 1023
- e.g. in single precision
- To store an exp. of +3 , you actually store $127+3=130$
- To store an exp. of -3 , you actually store 127-3=124

Floating Point Representation(cont...)

- Larger the number of bits for Exponent, the larger is the range
- Larger the number of bits for Mantissa field, the greater is the precision
- Let's take an example of how a number is stored in floating point representation
-12. $6_{10}=1100.100110011001 \ldots 2$
-+1.100100110011001..
Sign
Mantissa Saved in access notation i.e. by adding bias value (127, 1023 or some other)

Floating Point Representation(cont...)

- So in single precision the above values will be stored in memory like

1-bit	-bits	23-bits
0	10000010	$1001100110011001 \ldots$
Sign	$+3+127=130$	Mantissa

Range on Single Precision

- Smallest Value:

1-bit	8-bits	23-bits
$0 / 1$	00000001	$0000000000000000 \ldots$
Sign	$1-127=126$	Mantissa
$\pm 1.0 * 2-126= \pm 2-126$		

- Largest Value:

1-bit	8-bits	23-bits
$0 / 1$	1111 1110	1111111111111111...
Sign	$254-127=+127$	Mantissa
$\pm 1.1111 * 2+127= \pm 2 * 2^{+127}$		

Note: Exponents of all 0's and all 1's are reserved

Precision

- floats:
- float is stored in single precision which has 23-bits for decimal part
- $23 * \log _{10}{ }^{2}=23 * 0.3 \approx 6$ (6 decimal digits per precision)
- doubles:
- double is stored in double precision which has 52-bits for decimal part
- $52 * \log _{10} 2=52 * 0.3 \approx 12$ (12 decimal digits per precision)

Overflow \& Underflow

-Overflow:

- A value larger than the largest magnitude value
- e.g. in single precision
- value> 1.1111*2+127 $=\infty$

-Underflow:

- A value smaller than the smallest magnitude value
- e.g. in single precision
- value $<1 * 2^{-149}=0$
- It may not have a very large effect on addition but have a very large effect on multiplication

Overflow \& Underflow(cont...)

- There is a bunch of numbers which, along floating point numbers, get very small by sacrificing the significant bits, these numbers are called Denormalized numbers
- Numbers $<1 * 2^{-149}$ are de-normalized

Overflow \& Underflow(cont...)

```
//Program for showing overflow
#include<stdio.h>
int main(){
    short a,b;
    printf("Enter a number: ");
    scanf("%d",&a);
    b=a+10;
    printf("%d+10=%d\n",a,b);
    return 0;
}
```


Overflow \& Underflow(cont...)

- Output of above program is:

$$
\begin{aligned}
& \text { Enter a number: } 32767 \\
& 32767+10=-32759
\end{aligned}
$$

- Here, when we add $7 \operatorname{FFF}_{16}\left(32767_{10}\right)$ and $A_{16}\left(10_{10}\right)$, the result is $8009_{16}\left(-32759_{10}\right)$
- Actually $8009_{16}=1000 \quad 0000 \quad 0000 \quad 1001_{2}$ (a -ve number)
- So after taking 2's complement, we get -3275910

SUMMARY

