
C-Refresher: Session 03
Data Representation

Arif Butt 
Summer 2017

I am Thankful to my student Muhammad Zubair bcsf14m029@pucit.edu.pk for preparation of 
these slides in accordance with my video lectures at

http://www.arifbutt.me/category/c-behind-the-curtain/

mailto:bcsf14m029@pucit.edu.pk
http://www.arifbutt.me/category/c-behind-the-curtain/


Today’s Agenda

• Data Types

• Multi-Byte Load/Store

• Fixed Point Representation

• IEEE Standard for Floating Point

• Range on Single Precision

• Precision

Muhammad Arif Butt (PUCIT) 2



Data Types

A datatype, in programming, is a classification
that specifies which type of value a variable can
store and what type of mathematical, relational
or logical operations can be applied to it without
causing an error.
A string, for example, is a datatype that is
used to classify text, and an int is a datatype
used to classify whole numbers.

Muhammad Arif Butt (PUCIT) 3



•Different datatypes are available in C for
storing a particular type of values

•There are three types of values
1. Integer
2. Character
3. Floating Point

•Different datatypes for storing a particular
type of values are shown on next slide

Data Types(cont…)

Muhammad Arif Butt (PUCIT) 4



Integer Character Floating Point

short char float

int double

long long double

long long

Muhammad Arif Butt (PUCIT) 5

Different Data Types

Note: short, int, long, long long and
char are both signed and unsigned



Range:
•Range of values that can be occupied by
different datatypes depends upon the
platform, hardware (OS 32 or 64-bit) and
compiler

•The command used to measure size of
different datatypes is
sizeof(data_type);

Data Types(cont…)

Muhammad Arif Butt (PUCIT) 6



limits.h
• There is a file limits.h which contains ranges for

different datatypes

• Path of file is
• /usr/include/limits.h

getconf
• Instead of looking at limits.h file, we can use
getconf command which contains ranges of lots of
parameters
$ getconf -a

Muhammad Arif Butt (PUCIT) 7

Data Types(cont…)



• getconf command can also be passed an argument to show
the value of that particular argument

• e.g:
$ getconf CHAR_MIN //-128

$ getconf CHAR_MAX //127

$ getconf UCHAR_MAX //255

Muhammad Arif Butt (PUCIT) 8

Data Types(cont…)



//Program showing sizes of different data types

#include<stdio.h>

int main(){

printf("size of char: %d\n",sizeof(char));

printf("size of short: %d\n",sizeof(short));

printf("size of int: %d\n",sizeof(int));

printf("size of long: %d\n",sizeof(long));

printf("size of long long: %d\n",sizeof(long long));

printf("size of float: %d\n",sizeof(float));

printf("size of double: %d\n",sizeof(double));

printf("size of long double: %d\n",sizeof(long double));

return 0;}

Data Types(cont…)

Muhammad Arif Butt (PUCIT) 9



output of above program:

• size of char: 1

• size of short: 2

• size of int: 4

• size of long: 8

• size of long long: 8

• size of float: 4

• size of double: 8

• size of long double: 16

• Note: These are the sizes on a x86_64 system with kernel
4.6.0-kali-amd64

Data Types(cont…)

10Muhammad Arif Butt (PUCIT)



• Let’s declare a variable
short i=54;

• 54(10) = 0000 0000 0011 0110(2)

• Now there are more than one bytes

• There are two ways of storing these bytes in the
memory

• Little Endian scheme (used in intel)

• Big Endian scheme(used in MIPS)

Muhammad Arif Butt (PUCIT) 11

Multi-Byte Load/Store

Byte 1Byte 2



Little Endian:
• In Little Endian scheme, the bytes are put into the

memory form right to left, i.e. the rightmost byte is
put on a lower memory address and then the bytes
from right to left are put in memory on consecutively
higher memory addresses

• e.g.
• If we have memory addresses 100 and 101 then Byte-

1 will be put in 100 memory address and Byte-2 will be
put in 101

Muhammad Arif Butt (PUCIT) 12

Multi-Byte Load/Store(cont…)



Big Endian:
• In Big Endian scheme, the bytes are put into the

memory form left to right, i.e. the leftmost byte is
put on a lower memory address and then the bytes
from left to right are put in memory on consecutively
higher memory addresses

• e.g.
• If we have memory addresses 100 and 101 then Byte-

1 will be put in 101 memory address and Byte-2 will be
put in 100

Muhammad Arif Butt (PUCIT) 13

Multi-Byte Load/Store(cont…)



• Max number of values that can be stored using n number
of bits can be calculated using the formula
• 2n

• e.g.
• No. of values stored in 1 bit are 21,i.e. 1&0
• No. of values stored in 2 bits are 22,i.e. 00, 01,

10, 11

• and so on

• Range of values that can be stored in n number of bits is
given as(on next slide)

Muhammad Arif Butt (PUCIT) 14

Multi-Byte Load/Store(cont…)



For Unsigned(n bits)
• 0 -> 2n-1

• e.g. for 8-bits => 0 -> 28-1 i.e. 0 -> 255

For Signed(n bits)

• There are two ways:

1. Signed Magnitude:
• -(2n-1-1) -> +(2n-1-1)

• This way is generally not used in our computer
systems due to two reasons

Muhammad Arif Butt (PUCIT) 15

Multi-Byte Load/Store(cont…)



(i) Zero can be represented in two ways, i.e. we have a

+ve zero 0000 and a –ve zero 1000 (as 0 represents

a +ve sign and 1 represents –ve sign)

(ii) Normal Binary arithmetic rules do not apply

• e.g. adding 0001(+1) and 1001(-1) yields 1010(-

2), it would rather have been 0 but its not

2. 2’s Complement:
• -2n-1 -> +(2n-1-1)

• e.g. for 8-bits => -128 -> +127

Muhammad Arif Butt (PUCIT) 16

Multi-Byte Load/Store(cont…)



• 2’s complement is used in computer systems as
• zero can be represented in one way only, i.e. 0000
(if in 4-bits)

• Binary arithmetic can be applied without any error

• e.g. adding 0001(+1) and 1111(-1) yields

0000(0)

•Note: There is an extra –ve number in 2’s
complement as there is only one way for
representing zero

Muhammad Arif Butt (PUCIT) 17

Multi-Byte Load/Store(cont…)



Multi-Byte Load/Store(cont…)
/*Program for getting range(s) of short datatype..may also

be used for some other*/

#include<stdio.h>

int main(){

printf("Size of short: %d\n",sizeof(short));

int bits=8*sizeof(short);

printf("Bits: %d\n",bits);

int from=0;

int to=(1<<bits)-1; //1*2bits

printf("Range of unsigned short is from %d to %d\n",from,to);

from=-(1<<bits-1);

to=(1<<bits-1)-1;

printf("Range of short is from %d to %d\n",from,to);

return 0;}



• Output of above program:

Size of short: 2

Bits: 16

Range of unsigned short is from 0 to 65535

Range of short is from -32768 to 32767

• Similarly, we can find range for other data types using this
program as a template, i.e. replacing short with that
datatype e.g. int

• These values can also be verified from
/usr/include/limits.h file or using getconf command

Muhammad Arif Butt (PUCIT) 19

Multi-Byte Load/Store(cont…)



• Real number can be represented in two ways

• Fixed point

• Floating point (our system uses this one)

Fixed Point Representation:

• Let’s take a number (12.6)10 = (1100.10011001…)2

• There are three fields in fixed point representation

• Sign(+,-)

• Integer field

• Fractional field
Muhammad Arif Butt (PUCIT) 20

Fixed Point Representation 



• If we represent the number in 32-bit system

Muhammad Arif Butt (PUCIT) 21

Fixed Point Representation(cont…) 

0 000000000001100 1001100110011001

1-bit 15-bits 16-bits

Sign(0/1) Integer part Fractional part

• Now the largest number which can be stored is given as
• (215-1)+(1-2-16) = 32767.9999 ≈ 32768

• Smallest number is
• 0+2-16 ≈ 0.000015



• Advantages:

• Very fast performance as number is saved as integer

• Perform different optimizing techniques without any
additional hardware

• Disadvantages:
• Operand size -- has very limited range of operand

values

Muhammad Arif Butt (PUCIT) 22

Fixed Point Representation(cont…) 



• Introduced in 1985, based on scientific notation

• It has been accepted as the IEEE standard for floating 
point

• Current version of IEEE is IEEE 754-2008

• Storage:

• Single precision of 32-bits
• Double precision of 64-bits
• Quadruple precision of 128-bits
• Octuplet precision of 256-bits

Muhammad Arif Butt (PUCIT) 23

Floating Point Representation 

Sign Exponent Mantissa

1-bit 8-bits 23-bits
1-bit 11-bits 52-bits
1-bit 15-bits 118-bits
1-bit 19-bits 236-bits



• Sign field can be 0 or 1 i.e. + or –

• In Exponent field, base is implicit i.e. the base is 2

• The exponent can be both +ve and –ve

• To store these +ve and –ve exponents, a bias is added
to the exponent, e.g.
• In case of single precision, bias value is 127

• In case of double precision, bias is 1023

• e.g. in single precision
• To store an exp. of +3, you actually store 127+3=130

• To store an exp. of -3, you actually store 127-3=124

Muhammad Arif Butt (PUCIT) 24

Floating Point Representation(cont…)



• Larger the number of bits for Exponent, the larger is
the range

• Larger the number of bits for Mantissa field, the
greater is the precision

• Let’s take an example of how a number is stored in
floating point representation
• 12.610=1100.100110011001…2
• +1.100100110011001…*2+3

Muhammad Arif Butt (PUCIT) 25

Floating Point Representation(cont…)

Sign

(Need not to be saved)

Mantissa Saved in access notation i.e. by
adding bias value(127, 1023 or 
some other)



• So in single precision the above values will be stored in 
memory like

Muhammad Arif Butt (PUCIT) 26

Floating Point Representation(cont…)

0 1000 0010 1001100110011001…

1-bit 8-bits 23-bits

Sign +3+127=130 Mantissa



• Smallest Value:

Muhammad Arif Butt (PUCIT) 27

Range on Single Precision

0/1 0000 0001 0000000000000000…

1-bit 8-bits 23-bits

Sign 1-127=126 Mantissa

Note: Exponents of all 0’s and all 1’s are reserved

±1.0*2-126=±2-126

• Largest Value:

0/1 1111 1110 1111111111111111…

1-bit 8-bits 23-bits

Sign 254-127=+127 Mantissa

±1.1111*2+127=±2*2+127



• floats:

• float is stored in single precision which has 23-bits for
decimal part

• 23*log10
2 = 23*0.3 ≈ 6 (6 decimal digits per

precision)

• doubles:

• double is stored in double precision which has 52-bits
for decimal part

• 52*log10
2 = 52*0.3 ≈ 12 (12 decimal digits per

precision)
Muhammad Arif Butt (PUCIT) 28

Precision



Overflow:

• A value larger than the largest magnitude value

• e.g. in single precision

• value> 1.1111*2+127 = ∞

Underflow:

• A value smaller than the smallest magnitude value

• e.g. in single precision

• value<1*2-149 = 0

• It may not have a very large effect on addition but have a
very large effect on multiplication

Muhammad Arif Butt (PUCIT) 29

Overflow & Underflow



• There is a bunch of numbers which, along floating
point numbers, get very small by sacrificing the
significant bits, these numbers are called De-
normalized numbers

• Numbers <1*2-149 are de-normalized

Muhammad Arif Butt (PUCIT) 30

Overflow & Underflow(cont…)



Muhammad Arif Butt (PUCIT) 31

Overflow & Underflow(cont…)
//Program for showing overflow

#include<stdio.h>

int main(){

short a,b;

printf("Enter a number: ");

scanf("%d",&a);

b=a+10;

printf("%d+10=%d\n",a,b);

return 0;

}



• Output of above program is:

Enter a number: 32767

32767+10 = -32759

•Here, when we add 7FFF16(3276710) and A16(1010),
the result is 800916(-3275910)

• Actually 800916=1000 0000 0000 10012 (a –ve

number)

• So after taking 2’s complement, we get -3275910

Muhammad Arif Butt (PUCIT) 32

Overflow & Underflow(cont…)



Muhammad Arif Butt (PUCIT) 33


