
C-Refresher: Session 05
Operators in C

Arif Butt
Summer 2017

I am Thankful to my student Muhammad Zubair bcsf14m029@pucit.edu.pk for preparation of
these slides in accordance with my video lectures at

http://www.arifbutt.me/category/c-behind-the-curtain/

mailto:bcsf14m029@pucit.edu.pk
http://www.arifbutt.me/category/c-behind-the-curtain/

Today’s Agenda

• Review of Data types

• Type Conversion

• Operators in C

• Properties of Operators

• Bitwise Operators

• Understanding and Applications of Bitwise

Operators
Muhammad Arif Butt (PUCIT) 2

• Variables that we declare in C have some specific
datatype specified

• Along with some datatype, variables also have a
storage class associated with them

Storage Classes:
• These are the classes which provide information
about the location and visibility of the variable

• There are different storage classes available in C
which are used for different purposes

Muhammad Arif Butt (PUCIT) 3

Review of Data Types

1.auto
• This is the default class

• All variables that you declare are local to a block or
function. These variables are discarded when you exit
from the block or function

• You can use register keyword with automatic variable

• The variables that are automatic are stored in
registers, if possible, for quick access

• If auto is not mentioned then it is considered implicit

Muhammad Arif Butt (PUCIT) 4

Review of Data Types(cont…)

2. static
• The static variables can be made

• Within a function

• Outside a function

•Within a function
• If a variable is declared static within a function, it will

retain its value between various calls to the function, i.e.
when the user exits the function the value of the variable
is not discarded rather it is retained and when a new call
is made to the function that retained value can be used

Muhammad Arif Butt (PUCIT) 5

Review of Data Types(cont…)

•Outside the function
• The variable that are declared static outside the

function are global variables, and they can be accessed at
any time

• Now declaring a variable outside a function can have
two cases
• With static keyword--gives internal linkage, means

access within that .o or .c file in which variable is
declared not for other object files

• Without static keyword--gives external linkage, means
access in the entire program i.e. in all the .o files

Muhammad Arif Butt (PUCIT) 6

Review of Data Types(cont…)

3. extern
• Declaring a variable with extern keyword gives it an
external linkage

Type Qualifier
• Defines some special properties of the variable being
declared

• There are two types of type qualifiers
• const

• volatile

Muhammad Arif Butt (PUCIT) 7

Review of Data Types(cont…)

• const

• Places a variable in read only memory and
increases the opportunities for optimization

• e.g. const double GRAVITY=9.8;

• volatile

• It tells the compiler that the variable value may
be changed at anytime outside the program

• e.g. volatile int date; => it indicates that
the value of variable date might have changed by
another program

Muhammad Arif Butt (PUCIT) 8

Review of Data Types(cont…)

• volatile const int location=725780; => it
indicates that the value of the variable location

may be modified by another program but it cannot
be changed inside the program

Muhammad Arif Butt (PUCIT) 9

Review of Data Types(cont…)

Type Conversion
• There are two types of conversion from one datatype to the

other

• implicit

• explicit

• Implicit conversion:

• When an expression involves variables of different
datatypes then they are needed to be converted to a
common datatype, this is done implicitly

• A lower datatype is converted to a higher datatype
before an arithmetic operation proceeds, i.e. a char to
short, short to int, int to long, long to long

long, long long to float, float to double, double

to long double and so on 10

• In an assignment operator expression, the value is
converted according to the datatype of the variable on
the left of the assignment operator, this may sometimes
cause loss of data

• e.g.

• long l, int i, float f, double d

• int x = l/i + i*f – d;

• The final result of the arithmetic computation will be a
double, which will be converted to an int

Muhammad Arif Butt (PUCIT) 11

Type Conversion(cont…)

• Explicit Conversion/Casting:

• Casting is a way of converting from one datatype to
another datatype, maybe forcefully

• Syntax
• (type-name)expression or
• type-name(expression)

• e.g. int x; long l; float f;

• x = (int)7.5; /*7.5 will be converted to an
int(.5 will be truncated)*/

Muhammad Arif Butt (PUCIT) 12

Type Conversion(cont…)

• x = (int)21.3/int(4.5); //at first 21.3 and 4.5

will both be truncated to an int and then the division
operation will be carried out

• x = (int)(l+f); //l and f will be added first and
the result will be converted to an int

• x = (int)ch1 + ch2; //ch1 will be converted to an
int first and then added to ch2

Muhammad Arif Butt (PUCIT) 13

Type Conversion(cont…)

• C language is very rich in built-in operators, which can
be divided as

1. Arithmetic Operators
• -, +, *, /, %, ++, --

2. Relational Operators
• <, <=, >, >=,==, !=

3. Logical Operators
• !, &&, ||

4. Bitwise Operators

• &, |, ^, ~, <<, >>

Muhammad Arif Butt (PUCIT) 14

Operators in C

5. Assignment Operators
• =, +=, -=, *=, /=, %=, <<=, >>=

6. Misc Operators
• sizeof(), &, *, ?:

Muhammad Arif Butt (PUCIT) 15

Operators in C(cont…)

1. Arity of Operator

• It is the number of operands an operator can take
• e.g.

• a++ => arity = 1
• a+b => arity = 2

2. Precedence of Operator

•When there are more than one operators involved
in an expression then it is the precedence of the
operators which decides that which operator
should be evaluated first

Muhammad Arif Butt (PUCIT) 16

Properties of Operators

• e.g. 1 > 2 + 3 && 4 /*there are 3 operators
involved in the expression >, + and && */

• The order of evaluation of this expression will be
1.+ => 2+3=5

2.> => 1>5=0

3.&& => 0&&4=0

• It’s better to write this expression like
• ((1>(2+3))&&4)

•Note: In C, zero means false, and anything else
means true

Muhammad Arif Butt (PUCIT) 17

Properties of Operators(cont…)

3. Associativity of Operator

• This property is used when two or more operators
in an expression have the same precedence

• It can be
• left associative => expression on the left should
be evaluated first, e.g. + operator is left
associative

• right associative => expression on the right
should be evaluated first, e.g. ^ operator is
right associative

Muhammad Arif Butt (PUCIT) 18

Properties of Operators(cont…)

• Bitwise operators are very important in low level
programming

• Applications of Bitwise operators include
1. Checking file permissions

2. Low level device control

3. Error detection & Correction
4. Data Compression Algorithm

5. Encryption Algorithm

Muhammad Arif Butt (PUCIT) 19

Bitwise Operators

1. NOT(~)

• It simply switches the bits from 0->1 and 1->0

• e.g.
• unsigned char ch=5; //ch=0000 0101

• ch = ~ch; //ch=1111 1010

• printf(“%c”,ch); //will print 250

2. AND(&)

• It applies AND operation on the bits of the two
numbers on which it is applied

Muhammad Arif Butt (PUCIT) 20

Understanding Bitwise Operators

• e.g.
• unsigned char ch1=5; //ch1=0000 0101 = 5

• unsigned char ch2=4; //ch2=0000 0100 = 4

• unsigned char ch3=ch1&ch2; //ch3=0000 0100=4

3. OR(|)

• It applies OR operation on the bits of the two
numbers on which it is applied

• e.g.
• unsigned char ch1 = 5; //ch1=0000 0101 = 5

• unsigned char ch2 = 4; //ch2=0000 0100 = 4

• unsigned char ch3=ch1 | ch2;//ch3=0000 0101=5

Muhammad Arif Butt (PUCIT) 21

Understanding Bitwise Operators(cont…)

4. XOR(^)

• It performs XOR operation on the two numbers on
which it is applied

• In XOR operation, the result is 1 if odd number of
bits are 1, otherwise the result is 0

• e.g.
• unsigned char ch1 = 5; //ch1=0000 0101 = 5

• unsigned char ch2 = 4; //ch2=0000 0100 = 4

• unsigned char ch3=ch1 ^ ch2;//ch3=0000 0001=1

Muhammad Arif Butt (PUCIT) 22

Understanding Bitwise Operators(cont…)

5. Left Shift(<<)

• It adds n no. of 0-bit(s) on the right side of the
bits of the number

• Left shift by n-bits is like multiplying the number
by 2n

• e.g.
• 5<<2 //it says that left shift 5 by 2-bits as 5 =

0000 0101

• 5 << 2 gives 0001 0100 and 0001 0100 = 20 also
5*22=20

Muhammad Arif Butt (PUCIT) 23

Understanding Bitwise Operators(cont…)

6. Right Shift(>>)

• It pumps n no. of MSB(Most Significant Bit) on the left
side of the bits of the number

• i.e.

• For Signed number it pumps 1’s (called Arithmetic
Shift)

• For Unsigned numbers it pumps 0’s (called Logical
Shift)

• Right shift by n-bits is like dividing the number by 2n

• e.g.
• 5>>2 //it says that right shift 5 by 2-bits as

5 = 0000 0101 so 5 >> 2 gives 0000 0001 = 1 and
also 5/22=1

Understanding Bitwise Operators(cont…)

AND(&) OR(|) XOR(^)

0&x =0 0|x =x 0^x =x

-1&x =x -1|x =-1 -1^x =x

x&x =x x|x =x x^x =0

x&x =0 x|x =1 x^x =-1

Muhammad Arif Butt (PUCIT) 25

Some Important Concepts of
Bitwise Operators

1. Swapping
• For now, we have done swapping of two numbers using

i. A third variable like
• temp=x;

• x=y;

• y=temp;

• This technique requires an extra variable

ii. Plus/Minus Operators like
• x=x+y;;

• y=x-y;

• x=x-y;

• This technique may cause overflow errors
26

Applications of Bitwise Operators

Muhammad Arif Butt (PUCIT)

iii. Multiplication/Division Operators like
• x=x*y;;

• y=x/y;

• x=x/y;

• This technique may not give good results when y is zero

• Here we are going to discuss a fourth way, i.e. using XOR
operator
• Let x=5; //x=0101

• y=10; //1010

• x=x^y;; //x=1111

• y=x^y; //y=0101 = 5

• x=x^y; //x=1010 = 10

• You see a swap has occurred 27

Applications of Bitwise Operators(cont…)

2. Check Ranges of various Datatypes

• Bitwise operators can be used to check the ranges of
different datatypes

• e.g.
• unsigned char (8-bits)

• Min value = 0

• Max value = 28-1

• so as 28 = 1<<8

• int unsigned_MaxValue = (1<<8)-1; /*255
which is the Max value */

Muhammad Arif Butt (PUCIT) 28

Applications of Bitwise Operators(cont…)

3. Checking Status of a bit
• For checking the status of a bit, we have to do two simple

steps
• Step-1: Create a mask

• Step-2: result = variable & mask

• Mask contains 1 at the location of that particular bit and
contains zeroes everywhere else

• e.g.
• unsigned char ch=11; //ch=0000 1011

• unsigned char mask=1<<2;/*mask=0000 0100 we are to
check bit# 2*/

• unsigned char result=ch & mask; /*result=0
=> bit is not set*/

Muhammad Arif Butt (PUCIT) 29

Applications of Bitwise Operators(cont…)

4. Setting a bit

• Bitwise operators can also be used to set a particular
bit by using a two step procedure

• Step-1: Create a mask

• Step-2: result=variable | mask

• e.g.
• unsigned char ch=11; //ch=0000 1011

• unsigned char mask=1<<2; /* mask=0000 0100

we are to set bit# 2 */
• unsigned char result=ch | mask;

//result=0000 1111 => bit has been set
Muhammad Arif Butt (PUCIT) 30

Applications of Bitwise Operators(cont…)

• Note: You can also use the same logic to set a range
of bits or to check if a range of bits is set or not

Muhammad Arif Butt (PUCIT) 31

Applications of Bitwise Operators(cont…)

Muhammad Arif Butt (PUCIT) 32

