C-Refresher: Session 09
Dynamic Memory

Arif Butt
Summer 2017

| am Thankful to my student Muhammad Zubair bcsf14m029@pucit.edu.pk for preparation of
these slides in accordance with my video lectures at

http://www.arifbutt.me/category/c-behind-the-curtain/

mailto:bcsf14m029@pucit.edu.pk
http://www.arifbutt.me/category/c-behind-the-curtain/

Today’s Agenda

» Heap Management

* Growing String on Heap

» 2D-Integer Arrays
« 2D-Character Arrays

Heap Management

Q o N

&

Heap Management(cont...)

* We use heap when at the time of writing the
program, we don't have idea that how much memory
we may heed during the working of the program

Halloca()

*alloca() is a function that is used to allocate
specified number of bytes in the caller's stack
during the program execution

*vold alloca(int size); /*size number of
bytes*/

Heap Management(cont...)

* But the limitation of this memory is that it does not
survive after the return statement of the function, in
which it is called, i.e. it is freed automatically when the
function, that has called alloca (), returns

*In stack, all the memory that is allocated is
automatically freed, that is why the variables that are
allocated on stack are called automatic variables

* In heap, the programmer is responsible for freeing the
memory allocated

Heap Management(cont...)

*In C++, new and delete operators are used for
allocating and deallocating the memory on heap

*In C, malloc() family of functions is used for heap
memory management

*malloc () family includes

void malloc(size t size);

* voi1d free(void *ptr);

*void *calloc(size t nmemb, size t size);

*void *realloc(void *ptr,size t size);

Heap Management(cont...)

1. malloc()

* void* malloc(size t size);

* It takes an integer as argument and allocate those many
number of bytes

* In case of success, it returns a pointer of type void to
the allocated memory on heap, which can be casted to
the required datatype

* In case of failure, it returns NULL
*e.q.

* char* str=(char*)malloc (20);

Heap Management(cont...)

* It allocates 20 bytes on heap and returns its starting
address which is casted to char* and then assigned to str

* Here, str is declared on stack and it is pointing to a
memory on heap

* Basically, memory allocated on heap is an unnamed memory
whose address has been assigned to str

« It is a better practice to tell the number of bytes like
this

*1int size=20;

e sizeof (char) *size /*it will pass 1*20 where size of
char is 1-byte on my machine*/

Heap Management(cont...)

 Tn case of int it would be

* sizeof (int) *size /*it will pass 4*20 where size of int
is 4 bytes on my machine*/

2. free()

* vo1d free(void *ptr);

* This function is used to free the memory on heap, to
which ptr is pointing

*eg.

e free(str) ;

Heap Management(cont...)

* Note that the memory allocated must be freed, as when
str goes out of scope, although we no more have access

to the memory allocated, but it remains allocated, so it
must be freed

3. realloc()
*void *realloc(void *ptr, size t size);

It is used to change the size of previously allocated
memory, pointed by ptr, to the new size specified in the

second argument
*e.gq.

* char* str’?2=realloc(str,sizeof (char)*30);

Heap Management(cont...)

* There is no trouble if you are increasing the size of memory,
but be careful, if decreasing the size because it can cause
loss of data

4. calloc()
*vold *calloc(size t nmemb, size t size);
*malloc () isonly for primitive datatypes

*calloc() is used to allocate memory for user defined
datatypes

» size is the size of datatype
» nmemb iS the humber of objects to be allocated
* Now let's write some programs to understand this

Heap Management(cont...)

/*Simple program showing allocation, using and deallocation of
memory on heap*/

#include<stdio.h>

#finclude<stdlib.h>

int main () {
int size;
printf ("Enter size of the array: ");
scanf ("%d", &size) ;
int* arr=(int*)malloc(sizeof (int) *size) ;
1f (arr==NULL)

perror (“‘malloc failed\n”);

Heap Management(cont...)

printf ("The initial values in the array are:\n");
for (int 1=0;1<size;1++)
printf ("%d\t",arr[i]); //mostly 0 is there
printf ("\nEnter %d elements of the array:\n",size);
for(int 1=0;1<s1ize;1++)
scanf ("%sd", &arr[1i]) ;
printf ("The elements of the array are:\n");
for(int 1=0;1<size;1++)
printf ("$d\t",arr[i]) ;
printf ("\n") ;
free (arr); /*deallocating the previously allocated memory*/
return 0;}

Heap Management(cont...)

 Output of the above program is:
Enter size of the array: 5
The 1nitial values 1n the array are:
0 O 0 0 0
Enter 5 elements of the array:

O b w N

The elements of the array are:
1 2 3 /] D

Heap Management(cont...)

/*In this pr'o;r'am size of the array is changed using
realloc

#include<stdio.h>
#include<stdlib.h>
int main () {
int size;
printf ("Enter size of the array: ");
scanf ("%d", &size) ;
int* arr=(int*)malloc(sizeof (int) *size) ;

if (arr==NULL) /*checking if malloc () is successful or
not™/

perror ("malloc failed\n");

printf ("Enter %d elements of the array:\n",size);

Heap Management(cont...)

for(int 1=0;i<size;i++)
scanf ("sd", &arrf1i]);
printf ("The elements of the array are:\n");
for(int 1=0;i<size;i++)
printf ("sd\t",arr[i]);
printf ("\nEnter new size of the array: ");

scanf ("%d", &size) ; /* taking size for the new array to
be allocated*/

int* arr2=(int*)realloc (arr,size); /*size of the

previously allocated array changed according to the newly entered
size™/

Heap Management(cont...)

1f (arr2==NULL)
perror ("realloc failed\n");
else
arr=arr2; /*assigning the address of new memory to arr*/
printf ("Elements of the new array are:\n");
for(int 1=0;1<size;1++)
printf ("sd\t",arr[i]) ;
printf ("\n");
free (arr); /* deallocating the memory on heap™/

return 0;

Heap Management(cont...)

 Output of the above program is:
Enter size of the array: 3

Enter 3 elements of the array:
1

2

3

The elements of the array are:
1 2 3

Enter new size of the array: 5

Elements of the new array are:
1 2 3 0 0

Heap Management(cont...)

/*The program takes size of input string from the user, allocates
that much memory on heap and stores a string in it*/

#include<stdio.h>
#include<stdlib.h>
finclude<string.h>
int main () {

int size;

printf ("Enter maximum size of sentence you want to
enter and store: ");

scanf ("3sd", &size) ;
getchar (); //toeat the \n ininput queue

char* sen=(char*)malloc (sizeof (char) *size);

Heap Management(cont...)

printf ("Now enter the string:\n");
fgets(sen,size,stdin);

/* To replace the new line character at the end of the string with
the null character™/

char* g

if ((g=strchr(sen, '\n'))!="\0")
*g="\0";

fputs (sen, stdout) ;

printf ("\n") ;

free (sen); //deallocating the memory

return 0O;

Heap Management(cont...)

 Output of the above program is:
Enter maximum size of sentence you want to enter
and store: 100

All 1s well that ends well
All 1s well that ends well

 The limitation of this program is that the user has to enter
the size first

« If user enters a larger size and then enters a small string,
this can cause wastage of memory

 And, on the other hand, if user enters smaller size and
enters a large string, it may cause the program to crash

Growing String on Heap

LAlgorithm for dynamically growing the string on heap
« Step-1

* Get 1 Byte on heap and place NULL on it
« Step-2
do

read a character

if it is ‘\n’, break

1f this 1s 1st character,

allocate 2 Bytes
else

reslize array to size+t+?2
Place character 1in the array

while input character is not ‘\n’

Growing String on Heap(cont...)

« Step-3
* Place NULL at the end of the string
* Now let's write a program for this algorithm

Growing String on Heap(cont...)

/*The program implements above algorithm*/
#include<stdio.h>
#include<stdlib.h>

int main () {

char* sen=(char*)malloc(sizeof (char)*1);

sen[0]="\0"; /*this will prevent the program from crash, if
user presses ENTER without entering any character*/

char ch;
int size=0;

printf ("Enter string of any size and I will store 1t
for you:\n");

Growing String on Heap(cont...)

do{ch=getchar () ;
if (ch=="\n")
break; //break the loop if user presses ENTER
if (sen[0]=="\0")
sen= (char*)realloc(sen, 2) ;
else
sen= (char*)realloc(sen,size+2);
sen[size++]=ch;
lwhile (ch!="\n");
sen[size]="\0";
printf ("$s\n", sen) ;
free (sen);

return 0;}

Growing String on Heap(cont...)

 Output of the above program is:

Enter string of any size and I will store 1t for
you :

All 1s well that ends well
All 1s well that ends well

* You can input string of any size and the program can store it

* Now let's write a program to show the use of cailoc() for
allocating memory for user-defined objects

Use of calloc() function

/*The program first declares a structure named Student and then
declares memory on heap of Student type using calloc () */

#include<stdio.h>
finclude<stdlib.h>
finclude<string.h>
struct Student{
int rollNum;
char name[30];
}sl;
int main () {
int size=5;

struct Student *arrayOfStudent=(struct
Student*)calloc(size,sizeof (sl) *size) ; /*calloc() used
to allocate memory of student type*/

Use of calloc() function(cont...)

1f (arrayOfStudent==NULL)

perror ("calloc failed\n");

for(int 1=0;i1<size;1i++){
arrayOfStudent[1] .rollNum=1i+1;
strcpy (arrayOfStudent [1] .name, "Default") ;
J
printf ("The elements of the array are:\n");
for(int 1=0;i1<size;i++){
printf ("Roll Number: %d",arrayOfStudent[1].rollNum):;
printf (", Name: $s\n",arrayOfStudent[i].name);
J
free (arrayOfStudent); //deallocating memory

return 0;}

Use of Calloc() function(cont...)

 Output of the above program is:
The elements of the array are:
Roll Number: 1, Name: Default
Roll Number: 2, Name: Default
Roll Number: Name: Default
Roll Number: Name: Default
Roll Number: Name: Default

o1 bW
N NN

2D-Integer Arrays

* For declaring 2D integer arrays, we first declare an array
of pointers on heap corresponding to the number of rows

* A double pointer, declared on stack, points to the array of
pointers on heap

« After declaring array of pointers, we declare array(s) of
integers on heap

* Each element in the array of pointers points to a
different array on heap

* Let's write a program to understand this
* Note: Only double pointer is declared on stack

2D-Integer Arrays(cont...)

/* The program declares and uses a 2D array on heap according to
the number of rows and columns specified by the user*/

#include<stdio.h>
finclude<stdlib.h>
vold 1nit (int**,1int,int) ;
vold print (int**,1int, 1int);
int main () {
int rows, cols;
printf ("Enter number of rows: ");
scanf ("sd", &rows) ;
printf ("Enter number of columns: ");

scanf ("sd", &cols) ;

2D-Integer Arrays(cont...)

/*first allocating an array of pointers equal to the number of
rows™/

int** table=(int**)malloc(sizeof (1nt*) *rows) ;
/*Allocating an integer array equal to the number of cols™/
for (int i=0;i<rows;i++)
table[l1]=(i1nt*)malloc(sizeof (1nt) *cols) ;
init (table, rows, cols) ;
print (table, rows,cols);
for(int 1=0;i<rows;i++)
free(table[1]);
free (table);

return 0;

2D-Integer Arrays(cont...)

vold 1nit (int** arr,int rows,int cols) {
printf ("Enter %d elements of 2D array:\n%,rows*cols);
/*Using nested loop for traversing the array™/
for(int i=0;i<rows;i++)
for (int j=0;j<cols; j++)
scanf ("sd", &arr[1][7J])
}
volid print (int** arr,int rows,int cols) {
printf ("The elements are:\n");
for (int 1=0;i<rows;i++) {
for (int j=0;j<cols; j++)
printf ("%d\t",arr[i][7]);
printf ("\n");}}

2D-Integer Arrays

 Output of the above program is:
Enter number of rows: 4
Enter number of columns: 3
Enter elements of array
1 2 3 45 6 789 10 11 12
The elements are:

1 2 3
4 5 0
78 9

10 11 12

2D-Character Arrays

 To understand this, we consider a scenario in which we
want to take number of names from the user

* We declare an array of character pointers equal to the
number of names

* Then we allocate character arrays on heap equal to the
length of name

* Each pointer in the array of pointers points to a character
array

* Let's understand this by writing a program

2D-Character Arrays(cont...)

/*Program declares a 2D character array on heap™/
#include<stdio.h>

#include<stdlib.h>
#include<string.h>
int main () {
int rows,cols;
printf ("Enter no. of rows: ");
scanft ("sd", &rows) ;
printf ("Enter max length of the name: ");
scanft ("sd", &cols) ;

getchar () ;

2D-Character Arrays(cont...)

/*Allocating no. of rows equal to the number of names™/

char** names=(char**)malloc (sizeof (char*) *rows) ;

/*Now allocating each character array equal to the max length of
a name given™/

for (int 1=0; 1<rows;1++)
names[1]=(char*)malloc(sizeof (char) *cols) ;
printf ("Enter %d names:\n",rows) ;
char* qg;
for(int 1=0; 1<rows;1++) {
fgets (names[1],cols,stdin) ;
if ((g=strchr(names[i], '"\n'"))!="\0")
*g="\0";

2D-Character Arrays(cont...)

printf ("The names entered are:\n");

for (int 1=0; i<rows;i++) {
fputs (names[1], stdout) ;
printf ("\n");

}

/*freeing the memory on heap™/

for (int 1=0;i<rows;i++)
free(names[1]);

free (names) ;

return 0O;

2D-Character Arrays(cont...)

* Output of the above program is:
Enter no. of rows: 3
Enter max length of the name: 20
Enter 3 names:
Arif Butt
Kakamanna
Hadeed
The names entered are:
Arif Butt
Kakamanna
Hadeed

* There is a problem with this program, let's see this from
another output

2D-Character Arrays(cont...)

* Output of the above program is:
Enter no. of rows: 3
Enter max length of the name: 10
Enter 3 names:
Muhammad Arif Butt
The names entered are:
Muhammad
Arif Butt

* You see that here when the length was 10, the program
didn't produce correct results

* The reason is max length was 10 and the first name entered
had more number of characters!

2D-Character Arrays(cont...)

* One solution is:

Enter no. of rows: 3

Enter max length of the name: 100 //Iar'ge Ieng’rh
Enter 3 names:

Muhammad Arif Butt

Kakamanna

Hadeed

The names entered are:

Muhammad Arif Butt

Kakamanna

Hadeed

* You see, now its working OK

* But here, memory is being wasted, as the 2" and the 3rd
names are very small but they are too consuming 100 bytes
of memory!

2D-Character Arrays(cont...)

* A better solution to this problem is that we use the code
for variable length of name, we previously wrote

e Let's see this in a program

2D-Character Arrays(cont...)

/*The program is similar to the previous one but here each element in

the array of pointers has its size according to the length of the name it
is containing™/

#include<stdio.h>
finclude<stdlib.h>
int main () {
int rows;
printf ("Enter number of names: ");
scanf ("sd", &rows) ;

getchar () ;

char** names=(char**)malloc(sizeof (char*) *rows) ;

printf ("Enter %d names, each on a new
line:\n", rows) :;

/*Now using that piece of code here*/

2D-Character Arrays(cont...

for (int i1i=0;i<rows;i++) {

names[1]=(char*)malloc (sizeof (char)*1);
names[1][0]="\0";
char ch;

int size=0;

do {
ch=getchar () ;
if (ch=="\n")
break;
if (names[i] [0]=="\0")
names|[i]=(char*)realloc(names|[1],2):;
else

names[1]=(char*)realloc(names[1],sl1ze+2);

2D-Character Arrays(cont...)

names[1] [size+t+]=ch;
lwhile (ch!="\n");
names[i] [size]l="\0";
}
printf ("The names entered are:\n");
for(int 1=0;i<rows;i++)
printf ("%$s\n",names[1]) ;
for(int 1=0;i<rows;i++)
free (names[1]);
free (names) ;

return 0;

2D-Character Arrays(cont...)

 Output of the above program is:
Enter number of names: 3
Enter 3 names, each on a new line:
Muhammmad Arif Butt
Kakamanna
Hadeed Ur Rehman
The names entered are:
Muhammmad Arif Butt
Kakamanna
Hadeed Ur Rehman

* You see that now name of any length can be entered and
also space allocated for each name is according to its
length

