
Lecture # 01-04
Overview of Course and HDL

Digital Logic Design

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001

1111110000010000

0000000000010000

1110001100001000

https://www.nand2tetris.org/
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

2

Course Information

Instructor: Muhammad Arif Butt, Ph.D.

• Required Textbooks:
– Digital Design, by M. Morris Mano, Michael D. Ciletti, 6th Edition, ISBN: 978-

93-530-6201-9
– The Elements of Computing Systems, Building a modern computer, by Noam

Nisan and Shimon Schocken, 2nd Ed, Published in 2020, ISBN-13: 978-
0262640688

– Introduction to Computing Systems: from bits and gates to C and beyond, by
Yale Patt and Sanjay Patel, 3rd Ed, Published in 2020, ISBN13:
9781260150537

3

Course Information

Instructor: Muhammad Arif Butt, Ph.D.

• Grades Website: http://online.pucit.edu.pk
• Resources Website: http://arifbutt.me
• Course Prerequisites : Nil

• Students Counseling hours:

– Mentioned on http://arifbutt.me

• Teaching Assistant info:

– Mentioned on http://arifbutt.me

• 24 hour turnaround for email: arif@pucit.edu.pk

http://online.pucit.edu.pk/
http://online.pucit.edu.pk/
http://online.pucit.edu.pk/
http://online.pucit.edu.pk/
mailto:arif@pucit.edu.pk

4

Where to find Stuff?

Instructor: Muhammad Arif Butt, Ph.D.

Where to find stuff?
http://www.arifbutt.me

– Lecture Slides
– Quizzes + Assignments + Labs
– Announcements
– Teaching Assistants
– SOPs and Course related Policies
– Download s/w tools, codes and other resources required for the

course from the following link:

https://github.com/arifpucit/

https://bitbucket.org/arifpucit/

http://www.arifbutt.me/
https://github.com/arifpucit/
https://bitbucket.org/arifpucit/coal-repo

5

Lecture Format

Instructor: Muhammad Arif Butt, Ph.D.

FAQ: "But professor, wouldn't it be more efficient if you
just taught us with the right answer to begin with?"
• Have you ever heard of a workout class where the

instructor did all the exercises while everyone else just
watched attentively?

31

6

Lab Format

Instructor: Muhammad Arif Butt, Ph.D.

• Please come to Labs (in time)
• Quizzes might be taken in class or in Lab, so don’t miss
• Contents covered in the Lab will come in the Quizzes as well as in

the Mid and Final exams

7

How Will You Be Evaluated?

Instructor: Muhammad Arif Butt, Ph.D.

• Final exam: 40%

• Mid-exam: 35%

• Sessional: 25%

– Surprise Quizzes: 15%

– Assignments / Home Tasks: 10%

8

Surprise Quizzes

Instructor: Muhammad Arif Butt, Ph.D.

• There will be surprise quizzes, given at the start of a lecture, during
any lecture. The total number of quizzes could be anywhere
between 4 and 40

• NO LATE or MAKEUP SURPRISE QUIZZES, under any
circumstances whatsoever

• Surprise quizzes are completely individual efforts
• Your best strategy is to play it safe – attend every lecture and do the

reading/programming assignments

9

Cheating Policy

Instructor: Muhammad Arif Butt, Ph.D.

• Academic integrity

• Both the cheater and the student who

aided the cheater will be held responsible

for the cheating

• The instructor may take actions such as:

– require repetition of the subject work,

– assign 'zero' or may be ‘negative’ marks for the subject work,

– for serious offenses, assign an F grade for the course

10

Late Policy for Home Works and PA

Instructor: Muhammad Arif Butt, Ph.D.

• Late policy for Assignment, Quizzes, and other deliverables

– No late Assignment submissions!

– No late quizzes or exams!

• Sticking to dates is your responsibility!

– Check announcements on lecture notes regularly

• Your best strategy is to play it safe – submit everything on time

11

Playing Safe in CS-223

Instructor: Muhammad Arif Butt, Ph.D.

If you follow these 4 simple rules during the CS223 class,
you'll make sure that you do well in the course:
1. Attend every lecture + Lab

2. Study/Understand the course material (textbook sections assigned
+ slides + Reading assignments), and practice the concepts on the
provided tools (H/W simulator, CPU emulator, Assembler,…)

3. Submit everything (PAs, HWs, quizzes, exams) on time - don't be
late

4. Don't cheat

12

Overview of the Course

Instructor: Muhammad Arif Butt, Ph.D.

13

Problem Solving on Computer

Instructor: Muhammad Arif Butt, Ph.D.

• Human Thought
• Algorithms
• Applications Software
• Systems Software / Compiler
• OS/Runtimes
• Assembly Language
• Machine Language (Instruction Set Architecture)
• Microarchitecture (core + memory hierarchy)
• Logic Design
• Device Level
• Physical Design
• Semiconductors/Silicon used to build transistors
• Properties of atoms, electrons, resistors, capacitors

14

Two Recurring Themes

Instructor: Muhammad Arif Butt, Ph.D.

Abstraction:
• Use of abstraction is all around us
• Take me to the air port
• Go straight 1.2 km, then make a right turn, go down 500 m,
then take a left, then go straight for another 750 m, then take
a right and so on

• Abstraction is a technique for establishing a simpler way for a
person to interact with a system, removing the details that are
unnecessary for the person to interact effectively with that
system

• It is a productivity enhancer – don’t need to worry about
details, until some thing goes wrong! And then, it becomes
important to understand the components and how they works
together

15

Two Recurring Themes (cont…)

Instructor: Muhammad Arif Butt, Ph.D.

Hardware vs. Software:
• Both are components of a computer system. Even if you

specialize in one, you should understand capabilities and
limitation of both

• Data types vs finite word length of a computer
• Functions vs function calling convention
• Recursion vs memory layout
• Pointers vs memory layout
• Data structures vs memory layout

A computer scientist can design much better solutions,
when he/she has a mastery of both the worlds!

16Instructor: Muhammad Arif Butt, Ph.D.

The Notion of Abstraction: (And Gate)

AND gate using NPN transistor

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-14

Basic Logic Gates

• Every layer in CS is an abstraction.
Depending on which layer you want to
live at, you will have different views of
the computer

• A transistor is an electronic device that
has three ends: a source, a sink, and a
gate

• An Intel processor measuring less than
a square inch has well over 1.5 billion
transistors on it

17

Abstract Interface

HLL & Compiler

Abstract Interface

Operating System

Abstract Interface

Virtual Machine

Abstract Interface

Assembly Language

Human Thought

Instructor: Muhammad Arif Butt, Ph.D.

Abstract Interface

Machine Language

Abstract Interface

MicroArchitecture

Abstract Interface

Chips & Logic
Gates

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	24

Building a logic gate

The Process:
ü Design the gate architecture

ü Specify the architecture in HDL
ü Test the chip in a hardware simulator
• Optimize the design

• Realize the optimized design in silicon.

?Xor
a

b

ou
t

outputs 1 if one, and only
one, of its inputs, is 1.

18

Review
Boolean Logic

Instructor: Muhammad Arif Butt, Ph.D.

19

Elementary Boolean Operations

Instructor: Muhammad Arif Butt, Ph.D.

Gate Symbol Operator

And

Or

Not

Nand

Nor

Xor

𝐴. 𝐵

𝐴 + 𝐵

𝐴′

(𝐴. 𝐵)’

(𝐴 + 𝐵)′

𝐴⨁𝐵

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-14

Basic Logic Gates

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-14

Basic Logic Gates

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-14

Basic Logic Gates

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-14

Basic Logic Gates

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-14

Basic Logic Gates

• Boolean Algebra (George Boole) is the branch of Algebra that deals
with logical operations and Binary variables. (Elementary Algebra
deals with numerical variables and arithmetic variables)

• Boolean Function is an expression formed by binary variables,
logical operators, parenthesis and an equal to sign. The value of a
Boolean function can either be zero or one. (Boolean Term can be a
product term or sum term)

20

Boolean Algebra

Instructor: Muhammad Arif Butt, Ph.D.

𝑓 𝑥, 𝑦 = 𝑥!𝑦 + 𝑥𝑦′

𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦!𝑧 + 𝑥𝑦𝑧

𝑓 𝑤, 𝑥, 𝑦, 𝑧 = 𝑤′𝑥′𝑦!𝑧 + 𝑤𝑥𝑦𝑧

21

Boolean Function Truth Table

Instructor: Muhammad Arif Butt, Ph.D.

x y z f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦 + 𝑥′𝑧

• A Truth Table is a listing of all possible combinations of logical
variables with the corresponding outputs.

• The number of rows in a Truth Table is 2n, where n is the number of
variables.

22

Truth Table Boolean Function

Instructor: Muhammad Arif Butt, Ph.D.

x y z f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦 + 𝑥′𝑧

𝑓 𝑥, 𝑦, 𝑧 = 𝑥!𝑦!𝑧 + 𝑥!𝑦𝑧 + 𝑥𝑦𝑧! + 𝑥𝑦𝑧

𝑓 𝑥, 𝑦, 𝑧 = ∑ 1, 3,6, 7

You can simplify a Boolean function using Boolean Identities or Karnough Map methods

23

Representation of Boolean Functions using Logic Gates

Instructor: Muhammad Arif Butt, Ph.D.

• A logic gate is a device that implements basic logic functions

• Basic Gates (Not, And, Or)

• Special Gates (Xor, Xnor)

• Universal Gates (Nand, Nor)

Implement NOT gate, using NAND/NOR gates:

a out

0 1
1 0

a out

out = a’a

a out = a’

24

Representation of Boolean Functions using Logic Gates

Instructor: Muhammad Arif Butt, Ph.D.

• A logic gate is a device that implements basic logic functions

• Basic Gates (Not, And, Or)

• Special Gates (Xor, Xnor)

• Universal Gates (Nand, Nor)

Implement OR gate, using NAND/NOR gates:

a b out

0 0 0
0 1 1
1 0 1
1 1 1

out = a+ba

b out

a

b

a
b

out = a+b

25

Representation of Boolean Functions using Logic Gates

Instructor: Muhammad Arif Butt, Ph.D.

• A logic gate is a device that implements basic logic functions

• Basic Gates (Not, And, Or)

• Special Gates (Xor, Xnor)

• Universal Gates (Nand, Nor)

Implement AND gate, using NAND/NOR gates:

a b out

0 0 0
0 1 0
1 0 0
1 1 1

a
b out

a

b
out

w1

a

b
out

26

Boolean Identities

Instructor: Muhammad Arif Butt, Ph.D.

Commutative law: Changing the order/sequence of

variables does not have any effect on output𝑥𝑦 = (𝑦𝑥)
𝑥 + 𝑦 = (𝑦 + 𝑥)

Associative law: Changing the order in
which the logic operations are performed does
not have any effect on output

𝑥 𝑦𝑧 = 𝑥𝑦 𝑧
𝑥 + (𝑦 + 𝑧 = (𝑥 + 𝑦) + 𝑧)

Distributive law
𝑥 𝑦 + 𝑧 = 𝑥𝑦 + 𝑥𝑧
𝑥 + 𝑦𝑧 = (𝑥 + 𝑦) + (𝑥 + 𝑧)

De Morgan law 𝑥𝑦 ! = (𝑥!+𝑦′)
𝑥 + 𝑦 ′ = (𝑥!𝑦′)

27

Hardware Description
Language

Instructor: Muhammad Arif Butt, Ph.D.

28

Hardware Description Language

Instructor: Muhammad Arif Butt, Ph.D.

• Hardware Description Language is a language that describes the
hardware of digital system in textual form

• There are two applications of HDL processing
Ø Hardware Simulation: We let our HDL programs run inside a h/w

simulator to simulate and debug the design. The h/w simulator
interprets the HDL and produce readable o/p, that predicts how the h/w
will behave before it is actually fabricated

Ø Hardware Synthesis: The HDL programs can be compiled into h/w
implementation using synthesizer and h/w compilation tools. The
output of h/w synthesizer is gate level netlist, which is later used to
fabricate an IC or to layout a Printed Circuit Board (PCB)

• There are a variety of HDLs available in the market. The most common
are SystemVerilog (based on C) and VHDL (Very high speed integrated
circuit Hardware Description Language) (based on Ada)

• In this course we will be using a simple/minimal HDL designed and
developed by Noam and Shimon (Designers of the course nand2tetris)

29

Hardware Simulator

Instructor: Muhammad Arif Butt, Ph.D.

• HDL simulators are software packages that simulate expressions written in
one of the hardware description languages, like VHDL, Verilog,
SystemVerilog, and so on

• Hardware Simulator that we will be using is designed and developed by
students of Interdisciplinary Center Herzliya Efi Arazi School of Computer
Science

• It can be used to build and test many different hardware platforms. In this
course, we will use it to design a complete computer, called Hack -- a 16-
bit computer equipped with a screen and a keyboard

• To design and build this Hack computer we need to write hdl programs for
elementary gates, combinational circuits, sequential circuits, registers,
RAM, ALU, control unit and its data path. Every time, we write these hdl
programs, we will test and debug them on this hardware simulator

• This is how h/w engineers build chips for real:
• First the h/w is designed tested and optimized on a software simulator
• Later the resulting gate logic is committed to silicon

30

Design Process

Instructor: Muhammad Arif Butt, Ph.D.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	24

Building a logic gate

The Process:
ü Design the gate architecture

ü Specify the architecture in HDL
ü Test the chip in a hardware simulator
• Optimize the design

• Realize the optimized design in silicon.

?Xor
a

b

ou
t

outputs 1 if one, and only
one, of its inputs, is 1.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	24

Building a logic gate

The Process:
ü Design the gate architecture

ü Specify the architecture in HDL
ü Test the chip in a hardware simulator
• Optimize the design

• Realize the optimized design in silicon.

?Xor
a

b

ou
t

outputs 1 if one, and only
one, of its inputs, is 1.

Behavior
Design Process:
• Design your circuit using the universal

NAND gate only
• Write down the HDL program file

specifying your logic circuit, using the
built-in Nand gate chip having interface
Nand(a=,b=,out=)

• Test the chip in a hardware simulator
• Optimize the design
• Realize the optimized design in silicon

Logic
Circuit

/* Nand gate: out = a Nand b */

CHIP Nand {
IN a, b;
OUT out;

BUILTIN Nand;
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-14

Basic Logic Gates

Nand.hdl

Chip Interface

Chip Implementation

a
b

out

You can also write down the HDL for the And, Or and Not gates using Nand gate and then
use these And, Or and Not gates to build the logic circuit as usual

31

Design of Or Gate Chip

Instructor: Muhammad Arif Butt, Ph.D.

a b out

0 0 0
0 1 1
1 0 1
1 1 1

/** Or gate: out = a or b */
CHIP Or {

IN a, b;
OUT out;

PARTS:
Nand(a=a, b=a, out=w1); //(a)’
Nand(a=b, b=b, out=w2); //(b)’
Nand(a=w1, b=w2, out=out); //(a’b’)’

}

chip
interface

chip
implementation

a
b

out

a

b

w1=a’ (a’b’)’
a+b

Or.hdl

CHIP Nand {
IN a, b;
OUT out;

BUILTIN Nand;
}

w2=b’

32

Design of And Gate Chip

Instructor: Muhammad Arif Butt, Ph.D.

a b out

0 0 0
0 1 0
1 0 0
1 1 1

/** And gate: out = a And b */
CHIP And {

IN a, b;
OUT out;

PARTS:
Nand(a=a, b=b, out=w1); //(ab)’
Nand(a=w1, b=w1, out=out); //ab

}

chip
interface

chip
implementation

a
b out

a

b
out

w1

And.hdl

CHIP Nand {
IN a, b;
OUT out;

BUILTIN Nand;
}

33

Design of Not Gate Chip

Instructor: Muhammad Arif Butt, Ph.D.

/** Not gate: out = a’*/
CHIP Not {

IN in;
OUT out;

PARTS:
Nand(a=in, b=in, out=out); //a’

}

chip
interface

chip
implementation

a out

0 1
1 0

a out a out = a’

Not.hdl

CHIP Nand {
IN a, b;
OUT out;

BUILTIN Nand;
}

34

Interactive Chip Testing
on

Hardware Simulator

Instructor: Muhammad Arif Butt, Ph.D.

35

How to Download the H/W Simulator?

Instructor: Muhammad Arif Butt, Ph.D.

• Type the following URL in your browser:
https://github.com/arifpucit/

https://bitbucket.org/arifpucit/
• In the public repositories pain, click the coal-repo repository, containing all the

source codes as well as the software tools used in this course
• In the left pane, click Downloads to download the entire repository on your

system. Now on your system just check the contents of tools directory that you
have just downloaded
Arif-MacBook:arifpucit-coal-repo/tools$ ls

HardwareSimulator.sh HardwareSimulator.bat

CPUEmulator.sh CPUEmulator.bat

Assembler.sh Assembler.bat

VMEmulator.sh VMEmulator.bat

JackCompiler.sh JackCompiler.bat

TextComparer.sh TextComparer.bat

builtInChips builtInVMCode bin OS

https://github.com/arifpucit/
https://bitbucket.org/arifpucit/

36

Starting the H/W Simulator

Instructor: Muhammad Arif Butt, Ph.D.

• Follow the following steps to start the h/w simulator on UNIX/Mac OS:
Ø Open the terminal
Ø Go to tools directory
Ø Set execute permissions of the file HardwareSimulator.sh
Ø Execute it

37

Interactive Chip Testing Demo

Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Interactive Testing
02/Or.hdl, And.hdl,

Not.hdl

38

Java Based H/W Simulator

Instructor: Muhammad Arif Butt, Ph.D.

39Instructor: Muhammad Arif Butt, Ph.D.

Loading a Chip in the H/W Simulator

Navigate to a directory
and select an .hdl file.

40Instructor: Muhammad Arif Butt, Ph.D.

§ Read-only view of the loaded .hdl file;
§ Defines the chip logic;
§ To edit it, use an external text editor.

§ Names and current values of the
chip’s input pins;

§ To change their values, enter
the new values here.

§ Names and current values of
the chip’s output pins;

§ Calculated by the simulator;
read-only.

§ Names and current values of the
chip’s internal pins
(used to connect the chip’s parts,
forming the chip’s logic);

§ Calculated by the simulator;
read-only.

Exploring the GUI of the H/W Simulator

41

Exploring The Chip Logic

Instructor: Muhammad Arif Butt, Ph.D.

1. Click any one of
the chip PARTS

2. A table pops up, showing the
input/output pins of the selected
part (actually, its API), and their
current values;
A convenient debugging tool.

42Instructor: Muhammad Arif Butt, Ph.D.

Interactive Chip Testing

1. User: changes the values of some input
pins

2. Simulator: responds by:
§ Darkening the output and internal pins,

to indicate that the displayed values are
no longer valid

§ Enabling the eval
(calculator-shaped) button.

43Instructor: Muhammad Arif Butt, Ph.D.

Interactive Chip Testing (cont…)

1. User: changes the values of some input
pins

2. Simulator: responds by:
§ Dimming the output and internal pins,

to indicate that the displayed values are
no longer valid

§ Enabling the eval
(calculator-shaped) button.

3. User: Clicked the eval button
4. Simulator: re-calculates the values

of the chip’s internal and output
pins (i.e. applies the chip logic to
the new input values)

5. To continue interactive testing,
enter new values into the input
pins and click the eval button.

Re-
calc

44

Designing Xor Chip

Instructor: Muhammad Arif Butt, Ph.D.

45

Designing and Building Xor Chip

Instructor: Muhammad Arif Butt, Ph.D.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	24

Building a logic gate

The Process:
ü Design the gate architecture

ü Specify the architecture in HDL
ü Test the chip in a hardware simulator
• Optimize the design

• Realize the optimized design in silicon.

?Xor
a

b

ou
t

outputs 1 if one, and only
one, of its inputs, is 1.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	24

Building a logic gate

The Process:
ü Design the gate architecture

ü Specify the architecture in HDL
ü Test the chip in a hardware simulator
• Optimize the design

• Realize the optimized design in silicon.

?Xor
a

b

ou
t

outputs 1 if one, and only
one, of its inputs, is 1.

Design Process:
• From truth table derive the simplified

Boolean Function
• Design the gate architecture
• Specify the architecture in HDL
• Test the chip in a hardware simulator
• Optimize the design
• Realize the optimized design in silicon

Logic
Gate

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	26

Design: from requirements to gate diagram

a

Not

Not

And

And

Or

b

out

General idea:
out=1 when:

a And Not(b)

Or

b And Not(a)

a b out

0 0 0

0 1 1

1 0 1

1 1 0

Xor
a

b

ou
t

outputs 1 if one, and only
one, of its inputs, is 1.

Requirement:

Build a gate that
delivers this
functionality

out

a b out

0 0 0

0 1 1

1 0 1

1 1 0

Output is 1 if one, and only one, of its inputs, is 1

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	27

a

Not

Not

And

And

Or

b

out

Design: from gate diagram to HDL

nota

notb
aAndNotb

notaAndb

out

b

a

b

a

in

in

out

out

out

out

b

a

/** Xor gate: out = (a And Not(b)) Or (Not(a) And b)) */

CHIP Xor {
IN a, b;
OUT out;

PARTS:
 // implementation missing

}

CHIP Xor {

IN a, b;

OUT out;

PARTS:

// Chip Implementation

}

out(a,b) = a’b + ab’

46Instructor: Muhammad Arif Butt, Ph.D.

/** Exclusive-or gate. out = a xor b */
CHIP Xor {

IN a, b;
OUT out;

// Implementation missing.
}

chip
interface

Chip Interface:
• Chip interface is typically supplied by the chip architect; similar to an

API, or a contract, which contains:
Ø Name of the chip
Ø Names of its input and output pins
Ø Documentation of the intended chip operation

Chip Interface

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	27

a

Not

Not

And

And

Or

b

out

Design: from gate diagram to HDL

nota

notb
aAndNotb

notaAndb

out

b

a

b

a

in

in

out

out

out

out

b

a

/** Xor gate: out = (a And Not(b)) Or (Not(a) And b)) */

CHIP Xor {
IN a, b;
OUT out;

PARTS:
 // implementation missing

}

47Instructor: Muhammad Arif Butt, Ph.D.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	28

/** Xor gate: out = (a And Not(b)) Or (Not(a) And b)) */

CHIP Xor {
IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

Design: from gate diagram to HDL

interface

implementation

Other Xor
implementations

are possible!

a

Not

Not

And

And

Or

b

out
nota

notb
aAndNotb

notaAndb

out

b

a

b

a

in

in

out

out

out

out

b

a

/** Xor gate: out = (a And Not(b)) Or (Not(a) And b)) */

CHIP Xor {

IN a, b;

OUT out;

PARTS:

Not(in=a, out=nota);

Not(in=b, out=notb);

And(a=a, b=notb, out=aAndNotb);

And(a=nota, b=b, out=notaAndb);

Or(a=aAndNotb, b=notaAndb, out=out);

Other Xor
implementations
are possible!

HDL for Xor Chip

Xor.hdl

Chip
Implementation

Chip
Interface

48

HDL Some Comments

Instructor: Muhammad Arif Butt, Ph.D.

• HDL is a functional/declarative language
• The order of HDL statements is insignificant
• Before using a chip part, you must know its interface. For

example: Not(in= ,out=), And(a= ,b= ,out=),
Or(a= ,b= ,out=)

/** Xor gate: out = (a And Not(b)) Or (Not(a) And b)) */

CHIP Xor {

IN a, b;

OUT out;

PARTS:

Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	29

HDL: some comments

• HDL is a functional / declarative language

• The order of HDL statements is insignificant

• Before using a chip part, you must know its interface. For example:

Not(in= ,out=), And(a= ,b= ,out=), Or(a= ,b= ,out=)

• Connection patterns like chipName(a=a,…) and chipName(…,out=out) are common

/** Xor gate: out = (a And Not(b)) Or (Not(a) And b)) */

CHIP Xor {
IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

49

Interactive Chip Testing Demo

Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Interactive Testing
03/Xor.hdl

50

Class Quiz

Instructor: Muhammad Arif Butt, Ph.D.

51

Class Quiz (Part:1)

Instructor: Muhammad Arif Butt, Ph.D.

𝒇 𝒙, 𝒚, 𝒛 = 𝒙𝒚! + 𝒙!𝒛 + 𝒙𝒚𝒛

Write down the Truth Table of following Boolean Function that
describes it’s behavior. Also draw its logic diagram/circuit, which is
the graphical representation of a Boolean Function that shows the
wiring and connection of each logic gate is called a logic circuit

Note: For more than two inputs AND/OR gate cascade them as both
operations are commutative as well as associative

52

Class Quiz (Solution Part:1)

Instructor: Muhammad Arif Butt, Ph.D.

𝒇 𝒙, 𝒚, 𝒛 = 𝒙𝒚! + 𝒙!𝒛 + 𝒙𝒚𝒛

53

Class Quiz (Part:2)

Instructor: Muhammad Arif Butt, Ph.D.

Not(in= ,out=)
And(a= ,b= ,out=)
Or(a= ,b= ,out=)

𝒇 𝒙, 𝒚, 𝒛 = 𝒙𝒚! + 𝒙!𝒛 + 𝒙𝒚𝒛
Write down the HDL code of this circuit in file named Quiz.hdl

Assume that you have unlimited quantities of two inputs And, Or gate chips
and single input Not gate chips

54

Class Quiz (Solution Part:2)

Instructor: Muhammad Arif Butt, Ph.D.

/** Class Quiz */
CHIP Quiz {
IN x, y, z;
OUT out;
PARTS:
Not(in=x, out=notx);
Not(in=y, out=noty);
And(a=x, b=noty, out=w1);
And(a=notx, b=z, out=w2);
And(a=x, b=y, out=tmp1);
And(a=tmp1, b=z, out=w3);
Or(a=w1, b=w2, out=tmp2);
Or(a=tmp2, b=w3, out=out);

}

Not(in= ,out=)
And(a= ,b= ,out=)
Or(a= ,b= ,out=)

𝒇 𝒙, 𝒚, 𝒛 = 𝒙𝒚! + 𝒙!𝒛 + 𝒙𝒚𝒛

Load this chip in the
Hardware Simulator
and verify the behavior
of the function as
described in the Truth
Table by giving all
possible inputs to the
chip inside the
Hardware Simulator

55

Representation of Boolean
Functions

Instructor: Muhammad Arif Butt, Ph.D.

56

Representation of Boolean Functions

Instructor: Muhammad Arif Butt, Ph.D.

o A minterm is a product term obtained by ANDing the ‘n’ variables, with each
variable being primed if the corresponding bit of the binary number is zero

o A maxterm is a sum term obtained by ORing the ‘n’ variables, with each variable
being primed if the corresponding bit of the binary number is one

o Minterms and Maxterms are complement of each other
o A Boolean Function can be represented in any of the following forms:

Ø Canonical Form

§ Sum of Minterms

§ Product of Maxterms

Ø Standard Form

§ Sum of Products

§ Product of Sums

Ø Non-Standard Form

𝑓 𝑥, 𝑦, 𝑧 = ∑ 1, 3,6,7 = 𝑥!𝑦!𝑧 + 𝑥!𝑦𝑧 + 𝑥𝑦𝑧! + 𝑥𝑦𝑧

𝑓 𝑥, 𝑦, 𝑧 = ∏ 2, 5 = 𝑥 + 𝑦′ + 𝑧 𝑥′ + 𝑦 + 𝑧′

𝑓 𝑥, 𝑦, 𝑧 = 𝑥(𝑦! + 𝑧)(𝑥! + 𝑦! + 𝑧!)

𝑓 𝑥, 𝑦, 𝑧 = (𝑥𝑦)(𝑥 + 𝑦) + 𝑦𝑧

𝑓 𝑥, 𝑦, 𝑧 = 𝑦! + 𝑥𝑦 + 𝑥!𝑦𝑧′

AND-OR

OR-AND

AND-OR

OR-AND

Note: Boolean functions in standard and non-standard form can be converted to canonical form by plugging in the missing values

57

Practice Questions

Instructor: Muhammad Arif Butt, Ph.D.

Given the following Boolean Functions, write down the Truth Table,
draw logic circuit, and write the HDL. Count number of gates and
number of levels. (Assume you have Not, And, Or chips in the current working directory)

𝑓 𝑥, 𝑦, 𝑧 = 𝑥!𝑧! + 𝑥𝑦!𝑧 + 𝑦𝑧

𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦 . 𝑥 + 𝑦 + 𝑦𝑧

𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦 !. 𝑥 + 𝑦 !. 𝑧

𝑓 𝑥, 𝑦, 𝑧 = ∑ 1, 3,6,7 = 𝑥!𝑦!𝑧 + 𝑥!𝑦𝑧 + 𝑥𝑦𝑧! + 𝑥𝑦𝑧

𝑓 𝑥, 𝑦, 𝑧 =∏ 0,2, 5 = (𝑥 + 𝑦 + 𝑧) 𝑥 + 𝑦′ + 𝑧 𝑥′ + 𝑦 + 𝑧′

𝑓 𝑥, 𝑦, 𝑧 = 𝑥(𝑦! + 𝑧)(𝑥! + 𝑦! + 𝑧!)

58

AND-OR to NAND

Instructor: Muhammad Arif Butt, Ph.D.

Given the following Boolean Functions in SOP, draw its logic circuit
using AND-OR configuration. Can you implement it using NAND gates
only? Write the corresponding Boolean function. Compare the truth
table of both functions. Draw the logic circuit using NAND gates only.
Write the HDL

𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦 + 𝑥𝑧 + 𝑦!𝑧′

𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑧 + 𝑥′𝑧′ + 𝑥!𝑦

𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦 + 𝑥!𝑦′ + 𝑦!𝑧

59

OR-AND to NOR

Instructor: Muhammad Arif Butt, Ph.D.

Given the following Boolean Function in POS, draw its logic circuit
using OR-AND configuration. Can you implement it using NOR gates
only? Write the corresponding Boolean function. Compare the truth
table of both functions. Draw the logic circuit using NOR gates only.
Write the HDL

𝑓 𝑥, 𝑦, 𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧)(𝑦! + 𝑧!)

𝑓 𝑥, 𝑦, 𝑧 = (𝑦! + 𝑧)(𝑥′ + 𝑦)(𝑥′ + 𝑧)

60

Summary of Concepts related to Boolean Functions

Instructor: Muhammad Arif Butt, Ph.D.

o Know how to draw a logic circuit from Boolean Function and vice-versa

o Know how to express a Boolean function as a Truth Table and vice-

versa

o Know how to convert a Boolean Function from Sum of Minterm to

Product of Maxterm and vice-versa

o Know how to form a two-level gate structure from a Boolean function in

sum of products form

o Know how to form a two-level gate structure from a Boolean function in

product of sums form

o Know how to convert a AND-OR circuit to NAND

o Know how to convert a OR-AND circuit to NOR

61

Gates Having More Than Two
Inputs

Instructor: Muhammad Arif Butt, Ph.D.

62

And4way: Gate that ANDs 4 bits

Instructor: Muhammad Arif Butt, Ph.D.

• Suppose we want to design an AND gate chip with four inputs
• Although we can design it using the built-in NAND gate, but why to

reinvent the wheel.
• Let us design it using the already designed AND gate chips with two

inputs

CHIP And4way{
IN a,b,c,d;
OUT out;
PARTS:
And(a=a, b=b, out=w1);
And(a=w1, b=c, out=w2);
And(a=w2, b=d, out=out);

}

���������� 0RUH�&RPELQDWLRQDO�&LUFXLWV

ZZZ�HGZDUGERVZRUWK�FRP�0\����7H[WERRNB+70�0\7H[W����B&K��B9���KWP �����

:H�QRZ�FRQVLGHU�DQ�DFWLYH�KLJK�GHFRGHU���)RU�WKLV�DQG�RWKHU�H[DPSOHV��ZH�DVVXPH�WKDW�WKH�GHFRGHU�KDV�EHHQ�HQDEOHG��HOVH�DOO�RI�LWV�RXWSXWV�DUH�����$Q�DFWLYH�KLJK
GHFRGHU�RXWSXWV�ORJLF���IRU�LWV�VHOHFWHG�RXWSXW�DQG�ORJLF���IRU�WKH�RXWSXWV�QRW�VHOHFWHG���)RU�)���ZH�KDYH�

6HHNLQJ�D�JDWH�WKDW�RXWSXWV���LI�DW�OHDVW�RQH�RI�LWV�LQSXWV�LV����ZH�DUH�OHG�WR�WKH�25�JDWH�

6HHNLQJ�D�JDWH�WKDW�RXWSXWV���RQO\�LI�DOO�LWV�LQSXWV�DUH����ZH�DUH�OHG�WR�WKH�125�JDWH�

And4way.hdl

w1
w2

out

a

b

c

d

And4way
And

And
And

out

To Do: Design AND8way chip using two
AND4way chips and a simple AND chip

63

Or4way: Gate that ORs 4 bits

Instructor: Muhammad Arif Butt, Ph.D.

• In a similar fashion, we can design an OR gate chip with four
inputs using the already designed OR gate chips with two inputs

CHIP Or4way{

IN a,b,c,d;

OUT out;

PARTS:

Or(a=a, b=b, out=w1);

Or(a=w1, b=c, out=w2);

Or(a=w2, b=d, out=out);

}

Or4way.hdl

Or4way Or
Or

Or

To Do: Design OR8way chip
using two OR4way chips and a
simple OR chip

64Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

05/And4way.hdl
05/Or4way.hdl

Multi Bit Gates Demo

65

Gates Having Two Inputs
Each of 16 Bits

Instructor: Muhammad Arif Butt, Ph.D.

66

Array Of Bits

Instructor: Muhammad Arif Butt, Ph.D.

• While designing hardware, a lot of times we need to manipulate a
bunch of bits together and it is conceptually convenient to think
about the bunch of bits that are manipulated together as one
entity called busses

• Example: A chip that performs bit-wise AND of two 16 bit
numbers. So the chip has two inputs each of 16 bits. The chip also
has an output of 16 bits. So in reality, the chip has 32 wires feeding
into it, and 16 wires going out of it, but still it's convenient to think
about it as two numbers feeding in and one number feeding out

CHIP And16 {
IN a[16], b[16];
OUT out[16];

PARTS:
/ / Put your code here:

}

67

And16: Gate that AND two 16-bit Numbers

Instructor: Muhammad Arif Butt, Ph.D.

a = 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 0
b = 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0

out = 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0

CHIP And16{

IN a[16], b[16];

OUT out[16];

PARTS:

And(a=a[0], b = b[0], out=out[0]);

And(a=a[1], b = b[2], out=out[1]);

And(a=a[2], b = b[3], out=out[2]);

. . . .

And(a=a[15], b = b[15], out=out[15]);

}

And16.hdl

And16

And

And

And

And

. . .

To Do: Design And8 chip using two
And4 chips and a simple And chip

68

Or16: Gate that OR two 16-bit Numbers

Instructor: Muhammad Arif Butt, Ph.D.

a = 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 0
b = 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0

out = 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0

CHIP Or16{

IN a[16], b[16];

OUT out[16];

PARTS:

Or(a=a[0], b = b[0], out=out[0]);

Or(a=a[1], b = b[2], out=out[1]);

Or(a=a[2], b = b[3], out=out[2]);

. . . .

Or(a=a[15], b = b[15], out=out[15]);

}

Or16.hdl

Or16

Or

Or

Or

Or

. . .

To Do: Design Or8 and Or4 chip, and
then use four Or8 chips and one Or4
chip to build Or32 chip

69

Not16: Gate that Perform Not of 16-bit Number

Instructor: Muhammad Arif Butt, Ph.D.

a = 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0

out = 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1

Not16.hdl

CHIP Not16{

IN a[16];

OUT out[16];

PARTS:

Not(in=a[0], out=out[0]);

Not(in=a[1], out=out[1]);

Not(in=a[2], out=out[2]);

. . . .

Not(in=a[15], out=out[15]);

}

16 16
a[16]

out[16]

70

Concept of Sub-Buses

Instructor: Muhammad Arif Butt, Ph.D.

• Buses are indexed right to left: if foo is a 16-bit bus, Then foo[0] is
the right-most bit (LSb), and foo[15] is the left-most bit (MSb)

• Buses can be composed from sub-buses, i.e., we can compose a 16
bit bus from two 8 bit buses

• Example: In the code snippet below, we have two 8 bit buses
namely lsb and msb. In the first 16 bit value to And16 chip we plug
in the 8 bits of lsb and the 8 bits of msb. Note the dotdot notation
using which we can mention the sub range of a bus

• Lastly if you want to initialize an entire bus with zeros or ones, you
can do so in one command by assigning “true” or “false” to the bus

. . .
IN lsb[8], msb[8], …
. . .
And16(a[0..7]=lsb, a[8..15]=msb, b=…, out=…);

71Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

05/And16.hdl
05/Or16.hdl

Gates with Buses: Demo

72

Gates Having More than 2 Input
Variables each of 16 bits

Instructor: Muhammad Arif Butt, Ph.D.

73

And4way16

Instructor: Muhammad Arif Butt, Ph.D.

• Suppose now we need to build a chip that bit-wise And four 16 bit numbers. We can design
this chip using three And16 chips each capable of Anding two 16 bit numbers
Ø The first And16 chip will bit-wise And two 16 bit numbers and place the result in a

variable, w1
Ø The second And16 chip will bit-wise And the third 16 bit number with w1 and place

the result in w2
Ø The third Add16 chip will bit-wise And the fourth 16 bit number with w2 and generate

the final output

CHIP And4way16 {

IN first[16], second[16],
third[16], fourth[16];

OUT out[16];

PARTS:

And16(a=first, b = second, out=w1);

And16(a=w1, b = third, out=w2);

And16(a=w2, b = fourth, out=out);

}

And4way16.hdl

And16

And16

And16

To Do: Design Or4way16 chip

74Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

05/And4way16.hdl

Multi-Bit Gates with Buses: Demo

75

What is a Built-in Chip?

Instructor: Muhammad Arif Butt, Ph.D.

76

Built-in Chips

Instructor: Muhammad Arif Butt, Ph.D.

// Mux16 gate (example)
CHIP Mux16 {

IN a[16],b[16],sel;
OUT out[16];
BUILTIN Mux16;

}

General
• A built-in chip has an HDL interface and a Java

implementation (e.g. here: Mux16.class)
• The name of the Java class is specified following

the BUILTIN keyword
• Built-In implementations of all the chips that are

supplied in the tools/buitInChips directory
Built-in chips are used to:
• Implement basic primitive gates to build other gates (Nand and DFF)
• Provide the functionality of chips that the user did not implement for some reason
• Improve simulation speed and save memory (when used as parts in complex chips)
• Implement chips that have peripheral side effects (like I/O devices)
• Implement chips that feature a GUI (for debugging)
• Built-in chips can be used either explicitly, or implicitly

Note: The supplied simulator software features built-in chip implementations of all the chips in the Hack
chip set. If you don’t implement some chips from the Hack chipset, you can still use them as chip-parts of
other chips: Just rename their given stub files to, say, Mux16.hdl1. This will cause the simulator to use the
built-in chip implementation

77

Explicit Use Of Built-in Chips

Instructor: Muhammad Arif Butt, Ph.D.

The chip is loaded from the tools/buitIn
directory (includes executable versions
of all the chips mentioned in the book).

Standard interface.

Built-in implementation.

78

Implicit Use Of Built-in Chips

Instructor: Muhammad Arif Butt, Ph.D.

/** Exclusive-or gate. out = a xor b */
CHIP Xor {

IN a, b;
OUT out;
PARTS:
Not(in=a,out=Nota);
Not(in=b,out=Notb);
And(a=a,b=Notb,out=aNotb);
And(a=Nota,b=b,out=bNota);
Or(a=aNotb,b=bNota,out=out);

}

• When any HDL file is loaded, the simulator parses its definition. For each internal chip
Xxx(...) mentioned in the PARTS section, the simulator looks for an Xxx.hdl file in the same
directory (e.g. Not.hdl, And.hdl, and Or.hdl in this example).

• If Xxx.hdl is found in the current directory (e.g. if it was also written by the user), the
simulator uses its HDL logic in the evaluation of the overall chip.

• If Xxx.hdl is not found in the current directory, the simulator attempts to invoke the file
tools/builtIn/Xxx.hdl instead.

• And since tools/builtIn includes executable versions of all the chips mentioned in the book, it
is possible to build and test any of these chips before first building their lower-level parts.

79

Summary of Built-in Chips

Instructor: Muhammad Arif Butt, Ph.D.

• If you don’t implement some chips, you can still use them as chip-
parts in other chips (the built-in implementations will kick in)

• Remember a chip cannot be used in its own implementation

80

What is Script Based
Chip Testing

Instructor: Muhammad Arif Butt, Ph.D.

81Instructor: Muhammad Arif Butt, Ph.D.

CHIP Xor {

IN a, b;

OUT out;

PARTS:

Not(in=a, out=nota);

Not(in=b, out=notb);

And(a=a, b=notb, out=aAndNotb);

And(a=nota, b=b, out=notaAndb);

Or(a=aAndNotb, b=notaAndb, out=out);

Xor.hdl

Xor.tst

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	32

Hardware simulation in a nutshell

Simulation options:
• Interactive
• Script-based
• With / without output and compare files

CHIP Xor {
IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

HDL code

load Xor.hdl,
output-file And.out,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

test script

simulate

hardware
simulator

load Xor.hdl;
set a 0, set b 0, eval;
set a 0, set b 1, eval;
set a 1, set b 0, eval;
set a 1, set b 1, eval;

Script-based Simulation
Simulation Options:
• Interactive
• Script Based: A test script is a series of commands to the simulator

• With/without output file
• With/without compare file

82

Script-base Simulation with an Output File

Instructor: Muhammad Arif Butt, Ph.D.

The logic of a typical test script
• Initialize by loading an HDL file
• Can create an empty output file
• List the names of the pins whose values

will be written to the output file
• Set-eval-output and repeat

Load Xor.hdl,
output-file Xor.out,
output-list a%B3.1.3 b%B3.1.3 out%B3.1.3;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

a	b	out
0	0	0
0	1	1
1	0	1
1	1	0

test script

output File, created
by the test script as
a side-effect of the
simulation process

Xor.tstXor.hdl

Xor.out

CHIP Xor {

IN a, b;

OUT out;
PARTS:

Not(in=a, out=nota);
Not(in=b, out=notb);

And(a=a, b=notb, out=aAndNotb);

And(a=nota, b=b, out=notaAndb);
Or(a=aAndNotb, b=notaAndb, out=out);

Tested chip

83

Script-base Simulation with Compare File

Instructor: Muhammad Arif Butt, Ph.D.

Load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp,
output-list a%B3.1.3 b%B3.1.3 out%B3.1.3;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

test script

Xor.tstXor.hdl
CHIP Xor {

IN a, b;

OUT out;
PARTS:

Not(in=a, out=nota);
Not(in=b, out=notb);

And(a=a, b=notb, out=aAndNotb);

And(a=nota, b=b, out=notaAndb);
Or(a=aAndNotb, b=notaAndb, out=out);

Tested chip

a	b	o u t
0	0	0
0	1	1
1	0	1
1	1	0

Xor.cmp
a	b	o u t
0	0	0
0	1	1
1	0	1
1	1	0

Xor.out
Simulation-with-compare-file logic
• If the script specifies a compare file,

when each output command is
executed, the outputted line is
compared to the corresponding line in
the compare file

• If the two lines are not the same, the
simulator throws a comparison error

84

Script Based Chip Testing Demo

Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Script Based Testing
03/Xor.tst

85

Loading A Script

Instructor: Muhammad Arif Butt, Ph.D.

To load a new script (.tst file),
click this button;

Interactive loading of the chip
itself (.hdl file) may not be
necessary, since the test script
typically contains a “load chip”
command.

86

Script Controls

Instructor: Muhammad Arif Butt, Ph.D.

Controls
the script
execution
speed Script = series

of simulation
steps, each
ending with a
semicolon.

Executes the next
simulation step

Multi-step execution,
until a pause

Pauses the script
execution

Resets
the script

87

Running A Script

Instructor: Muhammad Arif Butt, Ph.D.

Script
exec-
ution
flow

Typical “init” code:
1. Loads a chip definition (.hdl) file
2. Initializes an output (.out) file
3. Specifies a compare (.cmp) file
4. Declares an output line format.

88

Running A Script

Instructor: Muhammad Arif Butt, Ph.D.

Script
exec-
ution
ends

Comparison of the output lines to the
lines of the .cmp file are reported.

89

Viewing Output And Comparing Files

Instructor: Muhammad Arif Butt, Ph.D.

90

Viewing Output And Compare Files

Instructor: Muhammad Arif Butt, Ph.D.

Observation:
This output file
looks like a Xor
truth table

Conclusion: the chip logic
(Xor.hdl) is apparently correct
(but not necessarily efficient).

91

Players Involved in a H/W Construction Project

Instructor: Muhammad Arif Butt, Ph.D.

System Architect:
• Decides which chips are needed, and for each chip the architect

creates:
Ø A chip API
Ø A test script
Ø A compare file

Developer:
• The above three files given to the developer provide a convenient

specification of
Ø The chip interface (.hdl file)
Ø What the chip is supposed to do (.cmp file)
Ø How to test the chip (.tst file)

• Developer tasks is to implement the chip using these resources

