
#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

global main
SECTION .data   

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text   
main:      

mov rax,1      
mov rdi,1       
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60      
mov rdi,0      
syscall

0:  b8 01 00 00 00       
5:  bf 01 00 00 00       
a:  48 be 00 00 00 00 00 
11: 00 00 00   
14: ba 1b 00 00 00       
19: 0f 05 
1b: b8 3c 00 00 00       
20: bf 00 00 00 00 
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view
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Solution: multiplex, using an instruction register

program
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instruction	
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execute
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instruction

instruction	
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Memory	
address	

input	

control	bus
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address	bus (data	flows	not	shown,	to	minimize	clutter)
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Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g.  a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g.  out) 
q Internal pins (e.g.  nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001

1111110000010000

0000000000010000

1110001100001000

Lecture # 06
Data Storage - II

Digital Logic Design
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Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.
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Encoding Real Numbers

Instructor: Muhammad Arif Butt, Ph.D.

• Most scientific computations are performed using real numbers, i.e.,
numbers with a fractional part. In order to represent real numbers in
computers, we have to ask two questions:

Ø How many bits are needed to encode a real number?

Ø How to represent a real numbers using these bits?

• There are two ways to encode the real numbers:

Ø Fixed Point Representation

Ø Floating Point Representation

-7         -6 -5  -4        -3        -2          -1         0         1          2          3          4          5          6 7

Carnegie Mellon

!28

Representing Numbers in Binary
• Different types of number


• Integer (Negative and Non-negative) 

• Fractions 

• Irrationals

0 1 2 3 4 5 6 7-1-2-3-4-5-6-7 ……

1/4

1/2

3/4
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Fixed Point Representation

Instructor: Muhammad Arif Butt, Ph.D.
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• Let us use five bits to represent unsigned real numbers by
keeping three bits for the integral part and two bits for the
fractional part (as shown in table)

• Range (max/min values) for this representation is 0 to 7
• Precision (smallest distance between two successive

numbers) for this representation is 2-2 = ¼ = 0.2510

Decimal Binary
0.0 000.00
0.25 000.01
0.5 000.10
0.75 000.11
1.0 001.00
1.25 001.01
1.5 001.10
1.75 001.11
2.0 010.00
… …
… …
6.75 110.11
7.0 111.00
7.25 111.01
7.5 111.10
7.75 111.11

0       1       2       3
• Conversion:

001.012 = 0x22 + 0x21 + 1x20 + 0x2-1 + 1x2-2 = 1.2510
6.7510 = 110.112

001.10
+) 010.01

011.11

1.50
+) 2.25

3.75

• Integer Arithmetic Work, and
there is no need to align binary
point!

Unsigned Fixed Point Representation (5 bits)
• Fixed point representation fixes the position of binary point within a register.

Therefore fixes the sizes of the whole number and the fractional part of any real
number stored inside it

1/4

1/2

3/4
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Signed Fixed Point Representation (16 bits)
• Let us use 16 bits to represent signed fractional numbers by keeping one

bit for the sign, 11 bits for the integer part and 4 bits for the fractional part

• Range for this representation:

Ø From: -[(211 – 1) + (1 – 2-4 )] = -2047.937510

Ø To: (211 – 1) + (1 – 2-4 ) = +2047.937510

• Precision for this representation: 2-4=1/16 = 0.062510

• Advantage: Arithmetic and logical operations can be performed on fixed
point numbers using integer arithmetic (Performance). No FPU required

S Integer part (11) Fractional part (4)

0 11111111111 1111

1 11111111111 1111

0 00000000000 0001

Instructor: Muhammad Arif Butt, Ph.D.
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Limitations of Fixed Point Representation

1. Limited integer range. It is not possible to represent very large and very small numbers
with the same representation

2. Small precision, e.g., keeping 4 bits for the fractional part, the smallest fraction that can
be represented is 1/16

3. It is easy for an arithmetic operation to produce an overflow and underflow
Ø Overflow will occur when the result is large to fit in the representation (+/-

2047.9375 for 16 bit representation)
Ø Underflow will occur when the result is too small to fit in the representation, e.g., if

the result of the arithmetic is less than 0.0625. It can’t be represented in above scheme

• To represent very large numbers, we need to give
more bits to the integer part and less bits to the
fractional part. This will make it hard to represent
small numbers

• Similarly to represent very small numbers, we need
to give more bits to the fractional part and less bits
to the integer part. This will make it hard to
represent large numbers

+∞

S Integer part (11) Fractional part (4)

Small number Large number

Instructor: Muhammad Arif Butt, Ph.D.
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Floating Point Representation

Instructor: Muhammad Arif Butt, Ph.D.
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Floating Point Representation
• The concept of floating point binary numbers was introduced in the mid 1950s. It uses

scientific notation for storing the real numbers, thus increasing the range as well as precision
of real numbers

• One of the possible 16 bit representation is shown above. The mantissa with its sign, and the
exponent with its sign were saved in 2s complements format in 8 bits each

• There was no uniformity in the formats used to represent floating point numbers and
programs were not portable from one manufacturer’s computer to another

• To resolve the issue, a Standards Committee was formed by the Institute of Electrical and
Electronics Engineers (IEEE) to standardize how floating point binary numbers would be
represented in computers

• This standard, called IEEE Standard 754 for floating point numbers, was adopted in 1985
by all computer manufacturers. It allowed porting of programs from one computer to
another without the answers being different. The standard was updated in 2008 and then in
2019. The current standard is IEEE 754-2019

Instructor: Muhammad Arif Butt, Ph.D.

+/-M × 2+/-E

Mantisssa (8) Exponent (8)
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IEEE-754 Standard for
Floating Point Representation

Instructor: Muhammad Arif Butt, Ph.D.
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• A 32 bit floating point representation using IEEE-754 standard is shown below:

+/-M × 2+/-E

• The sign of the real number is stored in the MSb, followed by 8 bit exponent and then a 23
bit mantissa

• The mantissa presents the precision/accuracy. To increase precision, IEEE 754 Standard
uses a normalized mantissa which implies that its most significant bit is always 1. So the
mantissa actually has 24 bit precision, but only 23 bits need to be stored

• The exponent bits represent the range. To store the exponent and its sign, one can use 2’s
complement encoding. But the designers of IEEE-754 used some thing known a biased
notation. WHY?

S Exponent  & its sign (8) Mantissa (23)

IEEE 754 Standard for FP Representation

Instructor: Muhammad Arif Butt, Ph.D.
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$100 Question: Why exponent is saved in bias Notation?

Why does IEEE-754 designers 
used biased exponent 

representation?

S Exponent  & its sign 
(8)

Mantissa 
(23)

2(n-1) - 1
2(4-1) - 1 =  7
2(8-1) - 1  = 127

0 127 255Negative Positive

Bias-5 
Exponent

Bias-10 
Exponent

Bias-7 
Exponent
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Why does IEEE 754 standard use
biased exponent representation and
place it before the mantissa?

Instructor: Muhammad Arif Butt, Ph.D.

• The first advantage of use of biased exponent is that, it allows
to have different numbers of positive and negative exponents
(as discussed on previous slide)

• Keeping this biased exponent bits before the mantissa bits
allows two floating point numbers to be compared easily. As
you can see in the table the biased exponents are in lexical
order. This would not have been possible if exponent is saved
in 2’s complement. So, this way sorting real numbers may
also be carried out by IU as biased exponent are the most
significant bits

-127

-126

-125

-124

…

…

-1

0

1

…

…

125

126

127

128

0

1

2

3

…

…

126

127

128

…

…

252

253

254

255

True/Real 
Exponent

Biased 
Exponent

+127

-127

S Exponent  & its sign 
(8)

Mantissa 
(23)

$100 Question: Why exponent bits are before Mantissa?
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Conversion Examples

Instructor: Muhammad Arif Butt, Ph.D.
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Example 1

Instructor: Muhammad Arif Butt, Ph.D.

Convert 0.0937510 to 32 bit IEEE-754 floating point representation in 
Hex format

0.00011 22. Convert to pure binary:

0 01111011 1000000000000000000000

3. Normalize (to get mantissa and true exponent):

4. Determine biased exponent: -4  + 127 = 12310 = 011110112

7. Write Result in Hex:

0.00011  =   1.100 x 2-4

6. Assemble the result:

5. Remove leading 1 from mantissa: 1.100 = 10000000000000000000000

0011 1101 1100 0000 0000 0000 00000000
2

S Exponent  & its sign (8) Mantissa (23)

(Implied 1 on the left of the radix point is not stored)

0.09375 x 2 = 0.1875    0
0.1875 x 2 = 0.375        0
0.375 x 2 = 0.75            0
0.75 x 2 = 1.5                1
0.5 x 2 = 1.0                  1

1. Determine the sign bit: Positive, so 0

3DC00000
16



16

Example 2
Convert -123.310 to 32-bit IEEE-754 floating point representation in 
Hex format

1111011.0100110011… 22. Convert to pure binary:

1 10000101 11101101001100110011010

3. Normalize (to get mantissa and true exponent):

4. Determine biased exponent: +6  + 127 = 13310 = 100001012

7. Write Result in Hex:

= 1.1110110100110011… x 2+6

6. Assemble the result:

5. Remove leading 1 from mantissa: = .11101101001100110011001…

1100 0010 1111 0110 1001 1001 1001 1010
2

S Exponent  & its sign (8) Mantissa (23)

(Implied 1 on the left of the radix point is not stored)

0.3 x 2 = 0.6        0
0.6 x 2 = 1.2        1
0.2 x 2 = 0.4        0
0.4 x 2 = 0.8        0
0.8 x 2 = 1.6        1
0.6 x 2 = 1.2        1
0.2 x 2 = 0.4        0
0.4 x 2 = 1.8        0

….

1. Determine the sign bit: Negative, so 1

C2F6999A
16

üRound mantissa up or down if necessary: = .11101101001100110011010
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Example 3

Instructor: Muhammad Arif Butt, Ph.D.

2. Split to components:

3. Determine sign:

4. Determine biased exponent:

0, so positive

6. Write the result:

5. Get true exponent: 132 – 127 = +5

1. Convert to pure binary:

Given the 32-bit IEEE-754 floating point representation 426A000016
find the decimal value

0100 0010 0110 1010 0000 0000 0000 00002

0 10000100 11010100000000000000000

10000100 2 = 13210

+1. 11010100000000000000000 x 2+5 = +111010.1000000 = +58.5

(Don’t forget to write the implicit one before the significand bits)



18

Example 4

Instructor: Muhammad Arif Butt, Ph.D.

2. Split to components:

3. Determine sign:

4. Determine biased exponent:

0, so positive

6. Write the result:

5. Get true exponent: 130 – 127 = +3

1. Convert to pure binary:

Given the 32-bit IEEE-754 floating point representation 4144000016
find the decimal value

0 10000010 10001000000000000000000

10000010 2 = 13010

(Don’t forget to write the implicit one before the significand bits)

0100 0001 0100 0100 0000 0000 0000 00002

+1. 10001000000000000000000 x 23 = +1100.01000 = +12.25
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Range/Precision of IEEE FP Representation

Precision (32 bit): 0/1 00000001 00000000000000000000000

Range (32 bit): 0/1 11111110 11111111111111111111111

• Exponent: 254 - 127 = +127

• Significand: 1.111…1 = 1 + (1 - 2-23) = 2 - 2-23

• Range: +/- (2 - 2-23) x 2+127 = +/-3.403 x 10+38

• Exponent: 1 - 127 = -126

• Significand: 1.000…0 = 1

• Precision: +/- 1 x 2-126 = +/-1.1755 x 10-38

S Exponent & its sign (8) Mantissa (23)

An exponent of all 1s is reserve (more on it later)

Instructor: Muhammad Arif Butt, Ph.D.

An exponent of all 0s is reserve (more on it later)
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Storage Layout for IEEE FP Representation
• Single Precision (32 bits):

• Double Precision (64 bits):

• Quadruple Precision (128 bits):

• Octuple Precision (256 bits):

S Exponent & its sign (11) Mantissa (52)

S Exponent & its sign (15) Mantissa (112)

S Exponent & its sign (19) Mantissa (236)

S Exponent & its sign (8) Mantissa (23)

Instructor: Muhammad Arif Butt, Ph.D.

Precision = 23 x log10 2 = 6 decimal digits

Precision = 52 x log10 2 = 15 decimal digits

Precision = 112 x log10 2 = 33decimal digits

Precision = 236 x log10 2 = 71 decimal digits

Exponent bias = 2(8-1) – 1 = 127

Exponent bias = 2(11-1) – 1 = 1023

Exponent bias = 2(15-1) – 1 = 16383

Exponent bias = 2(19-1) – 1 = 262143
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Floating Point Arithmetic

Instructor: Muhammad Arif Butt, Ph.D.



Verification:

22Instructor: Muhammad Arif Butt, Ph.D.

0.0000000
+) 0.1001000

0.1001000 x 2+2

4.00
+) 2.25

6.25

Binary Addition of two 32 Bits FP Numbers

0 10000001 00000000000000000000000

010000001000000000000000000000002 + 010000000001000000000000000000002

Example1: Perform the sum of these two IEEE 754 32-bit floating point numbers:
0x4080000016 +  0x4010000016

0 10000000 00100000000000000000000

1.0000…2 x 2+2

+

1.00100…2 x 2+1+

1.0000…2 x 2+2 0.100100…2 x 2+2+

1. Convert to scientific notation and ensure that both numbers are normalized:

2. Make the exponents same:

3. Add mantissa together:

4. Result (Normalize if necessary):
1.1001000… x 2+2 = 0x40c80000 16= 0  10000001   10010000000000000000000 2



Verification:

23Instructor: Muhammad Arif Butt, Ph.D.

0.110100100
+) 0.111000010

1.101100110 x 2+5

58.250
+) 28.125

86.375

Binary Addition of two 32 Bits FP Numbers

0 10000100 11010010000000000000000

01000010011010010000000000000000 2 + 01000001111000010000000000000000 2

Example2: Perform the sum of these two IEEE 754 32-bit floating point numbers:
0x4269000016 +  0x41E1000016

0 10000011 11000010000000000000000

1.1101001…2 x 2+5

+

1.11000010…2 x 2+4+

1.1101001…2 x 2+5 0.1110000100…2 x 2+5+

1. Convert to scientific notation and ensure that both numbers are normalized:

2. Make the exponents same:

3. Add mantissa together:

4. Result (Normalize if necessary):
0.1101100110… x 2+6 = 0x42ACC000 16

= 0 10000101 01011001100000000000000 21.1101100110… x 2+6
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Floating Point Computation

Instructor: Muhammad Arif Butt, Ph.D.

• Overflow: An overflow occurs when a mathematical operation results in
a value that falls outside the range of a data type. In case of 32 bit FP
operations any result that falls outside +/-3.403 x 10+38 will be rounded to
infinity. (e.g., a=3.0 x 1030 then a*awill overflow)

• Underflow: An underflow occurs when an operation results in a value
that is smaller that the smallest number that can be stored as a floating
point number. (Remember there is no underflow in integer arithmetic). In
case of 32 bit FP operations any result that is less than +/- 1.1755 x 10-38 is
an underflow. (e.g., a=3.0 x 10-30 then a*awill underflow)

• So good programs must detect round-off errors as well as overflow/
underflow and raise alerts whenever they occur

0

OverflowOverflow Underflow
Truncation

NaN +3.4 × 1038-3.4 × 1038 NaN
+ ∞- ∞

+1.17x10-38-1.17x10-38
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IEEE 754: Special Values

Instructor: Muhammad Arif Butt, Ph.D.

Exponent Value Mantissa Represents
11111111 00000000 Infinity
00000000 00000000 Zero
11111111 Not all zeros Not a Number (NaN)
00000000 Not all zeros Subnormal (very small)

• Infinity: All 1s in the exponent field and all 0s in the mantissa field
represent infinity in the IEEE standard. The sign bit distinguishes between
negative infinity and positive infinity. Operations with infinite values are
well defined in IEEE floating point

• Zero: All 0s in the exponent field and all 0s in the mantissa field represent
zero in the IEEE standard. Even though +0 and –0 have distinct
representations, though they both compare as equal
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IEEE 754: Special Values

Instructor: Muhammad Arif Butt, Ph.D.

Exponent Value Mantissa Represents
11111111 00000000 Infinity
00000000 00000000 Zero
11111111 Not all zeros Not a Number (NaN)
00000000 Not all zeros Subnormal (very small)

• Not a Number (NaN): When an operation is performed by a computer on a
pair of operands which results in an indeterminate answer, it is called NaN
in IEEE standard. All 1s in the exponent field and not all 0s in the mantissa
field represent NaN

• Subnormal Number: If the exponent bits are all zeros, and the mantissa
are not all zeros, the value being represented is very very small. This is
known as a sub-normal or de-normalized number



27

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically weak!

• Represent following decimal numbers using 32-bit
IEEE-754 floating point representation:
• 19.59375
• 127.69
• -68.34

• Given the 32-bit IEEE-754 floating point numbers,
find their corresponding decimal values:
• 0x4355AE14
• 0xC18A0000

• Confirm your working by using online IEEE-754 converter:
https://www.binaryconvert.com/index.html

https://www.binaryconvert.com/index.html

