P

/S
&

Digital Logic Design

Memory

@RrR1

a —o CHIP Xor { program . > D=
\ IN a, b; - —} Qt
¢ / AndNotb o ToieT) instructon em
@' , ot PN OUT out; " M P
\ =,

¥ out ’ PARTS: ’
w. fota ; Not (%n—a, out=nota) ; M““mptl
N notaAndb Not (in=b, out=notb) ;

4/ And (a=nota, b=b, out=wl);
b — And (a=a, b=notb, out=w2);

0000000000000001
Or (a=wl, b=w2, out=out);
} 1111110000010000
0000000000010000
1110001100001000
Lecture # 19-20
[]
Registers, Memory and Counters
global main
SECTION .data
msg: db "Learning is fun with Arif", O0Ah, Oh
len msg: equ $ - msg 0: b8 01 00 00 0O
SECrI[‘é;):'.text 5: Dbf 01 00 00 00
#include<stdio.h> m(;v | a: 48 be 00 00 00 00 0O
#include<stdlib.h> mov rdi,1 11: 00 00 00

int main () { mey ESL,mEg) 14: ba 1b 00 00 00
Hl mov rdx,len_msg 19: 0f 05

printf ("Learning is fun with Arif\n"); —

exit (0); e Ees, 60 1b: b8 3c 00 00 00
} mov rdi, 0 20: bf 00 00 00 0O
syscall 25: 0f 05

Slides of first half of the course are adapted from:

https://www.nand2tetris.org

Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6 XpZUh3X2dPR 100MUE/view

Instructor: Muhammad Arif Butt, Ph.D.

https://www.nand2tetris.org/
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

e O
/& %)\
/s o £
S e 2 ,
|2 H
: €l
N % |
N //

. Review of Sequential Chips

* What are Registers?
* Design and HDL of 1-bit to 16-bit Registers

* Concept of Memory Hierarchy
* Multi-Byte Read/Write

* Design and HDL of Random Access Memory (8, 64, 512, 4K, 16K words)
* What are Counters?

* Why do we need Counter for our Hack Computer

* Concept of Program Counter

* Design and Implementation of PC for Hack Computer

e Demo on H/W Simulator

Instructor: Muhammad Arif Butt, Ph.D. 2

Review of Seguential ChiEs

state(t) = £ (state(t-1), 1nput(t))

> DFF L
AN
input | combinational - Df\F ’ output R
= logic > G g
> DFF >
s A y

Sequential chips are capable of maintaining state, and, optlonally acting on the state, and on the
current input

The simplest and most elementary sequential chip is DFF, which maintain a state, i.e., the value
of the input from the previous time unit

Using DFF we can design registers, and using registers we can design RAM, whose state is the
current values of all its registers. Given an address, the RAM emits the value of the selected
register

All combinational chips are constructed from NAND gates, while all sequential chips are

constructed from DFF gates, and combinational chips
e

Instructor: Muhammad Arif Butt, Ph.D. 3

CPU Registers

Instructor: Muhammad Arif Butt, Ph.D.

2/ CPU Registers

Computer System

Memory CPU

ALU
memo
intput m—)p Y | ——) output

A register is a small memory place inside the CPU that may hold data, memory address or
Instruction

The size of registers in a 64-bit computer must be of 64 bits

In our Hack computer is a 16 bit computer, so the registers we are going to design will be of
16 bits

There are several different classes of CPU registers which works in coordination with the
computer memory to run operations efficiently. (More on it later)

|

Instructor: Muhammad Arif Butt, Ph.D. >

1-Bit Register

Instructor: Muhammad Arif Butt, Ph.D.

I\

&) 1-Bit Register API
load

v

in —» Bit |—» out

* A single-bit register, which we call Bit, or binary cell, is designed to store a single
bit of information (0 or 1)

e The chip interface diagram shows that it has two input pins and one output pin.
The input pin carries a data bit, the load pin enables the cell for writes, and an
output pin that emits the current state of the cell

When you read the out pin of the binary cell, you will always get whatever is the
state of the binary cell

* To write the binary cell, we set the load bit to 1, now what ever is there on the
input bit will be stored inside the binary cell and will be available on the out pin in
the next clock cycle

 When the load bit is zero, the chip keep remembering the last input that was

loaded 1into it for infinity until a new load operation is performed
e

Instructor: Muhammad Arif Butt, Ph.D. /

£) Sequential Chips: 1-Bit Register

load

v

in —» Bit |—» out

value
* More accurately:
e Stores a bit until...

Chip name: Bit
Inputs: in, load
Outputs: out
Function: Tf load (t)
out (t+1)
else
out (t+1)

then

in(t)

out (t)

e Instructed to load, and store, another bit

Instructor: Muhammad Arif Butt, Ph.D.

Goal: Remember an input bit forever, until requested to load a new

Coveae of /,,f;,\
S AN,
& G

%
9
\

‘& Sequential Chips: 1-Bit Register

load Chip name: Bit
Inputs: in, load
L Outputs: out
.] Function: If load(t) then
in —» Bit —» out out (t+1) = in(t)
else

out (t+1) = out (t)

Time 1 2 3 4 5
§ 34 33 3
Load
0
. 1
in

N A
’ NN

Instructor: Muhammad Arif Butt, Ph.D. J

out

1-Bit Register ImElementation

in » DFF » out

P |
Instructor: Muhammad Arif Butt, Ph.D. 1o

P |
Instructor: Muhammad Arif Butt, Ph.D. H

1-Bit Register Implementation

load
|

in
out

DFF >
sendBack I

time: 1 2 3 4 5

load: 1
(example) 0

in:

(example) (%]

1
out:

%)

|

Instructor: Muhammad Arif Butt, Ph.D. =

‘&) 1-Bit Register Implementation

load
? out
; DFF O » 1
sendBack I
. (\
time: 1 2 3 4 5
load: 1
(example) 0
in:
(example) ©
1
out:
0
—

|

Instructor: Muhammad Arif Butt, Ph.D. =

oo o
)
2\

& _1-Bit Register Implementation

load
? out
; DFF » 1
sendBack I
) (™
time: 1 2 3 4 5
load: 1
(example)
in:
(example) (%]
1
out:
%)
—

P |
Instructor: Muhammad Arif Butt, Ph.D. L

oo o
)
2\

= 1-Bit Register Implementation

R——"9

load
|
in (%) °
1 1 out
1 DFF » 1
sendBack I
) (™
time: 1 2 3 4 5
load: 1
(example)
in:
(example) (%]
1
out:
%)
N

|

Instructor: Muhammad Arif Butt, Ph.D. =

oo o
)
2\

= 1-Bit Register Implementation

R——"9

load
|
in 0 °
— 1 1 out
1 DFF » 1
sendBack I
) (™
time: 1 2 3 4 5
load: 1
(example)
in:
(example) (%]
1
out:
%)
—

P |
Instructor: Muhammad Arif Butt, Ph.D. 16

oo o
)
2\

= 1-Bit Register Implementation

R——"9

load
|
in 0 1
— (%) 1 out
1 DFF » 1
sendBack I
) 4 A
time: 1 2 3 4 5
load: 1
(example)
in:
(example) (%]
1
out:
0
—

P |
Instructor: Muhammad Arif Butt, Ph.D. Y

030 of Iy
)

= 1-Bit Register Implementation

=y /

load
|
in (5] °
0 0 out
0 DFF » 0O
sendBack I
) 4 A
time: 1 2 3 4 5
load: 1
(example)
in:
(example) 0
1
out:
0
—

|

Instructor: Muhammad Arif Butt, Ph.D. 18

Computers Are Flexible

load
|
in 0 0
0 0 out
0 DFF ® » O
AN
sendBack
time: 1 2 3 4 5
load: 1
(example) ()
in: 1
. Resulting behavior:
(example) O Stores and emits a
value, until instructed
. 1 to load (and store) a
out: 0 new value

|

Instructor: Muhammad Arif Butt, Ph.D. 9

\\\\

= HDL for 1-bit Register

load
|
in 0 0 0 0
0 DFF o outy g
AN
sendBack
Bit.hdl
/** 1-bit register:
* Tf load[t] == 1 then. //load input in the ff
* out [t+1] = in[t]
* else //out does not change
*/ (out[t+1] = out[t])
CHIP Bit {
IN in, load;
OUT out;
PARTS:
Mux (a=sendBack, b=in, sel=load, out=MuxOut) :;
DFF (1in=MuxOut, out=sendBack, out=out);
}

e |
Instructor: Muhammad Arif Butt, Ph.D. 20

‘&) 1-Bit Register Demo

Instructor: Muhammad Arif Butt, Ph.D. 21

Multi-Bit Register

P |
Instructor: Muhammad Arif Butt, Ph.D. =

&) Multi-Bit Register

Iolad load load
" oee | in —<»{[Bit|[Bit Bit| <> out l o
— o » in " i i ; i > ou — Register EEPA
N\
(1-bit register) (multi-bit register)

(multi-bit register)
* A register 1s actually a group of flip-flops, each flip flop capable of storing one bit
of information

* An n-bit register consists of a group of n flip-flops capable of storing n bits of
binary information. In this course we will focus on designing of 16-bit registers for
our computer

* A 16 bit register can be created from an array of 16 1-bit registers

|

Instructor: Muhammad Arif Butt, Ph.D. 23

i
& K
|

16 Bit Register API

 The API of the 16 bit Register chip is essentially the same as the 1-bit register,
except that the input and output pins are designed to handle multi-bit values

* The interface diagram and API of a 16-bit register is shown below
* The Bit and Register chips have exactly the same read/write behavior:
* Read: To read the contents of a register, we simply probe its output

* Write: To write a new data value d into a register, we put d in the in input and
set the load input to 1. In the next clock cycle, the register commits to the new
data value, and its output starts emitting d, and it will keep emitting this new
value forever till the time we decide to write a new value in it

load Chip name: Register
Inputs: in[l6], 1load
. l Outputs: out[16]
n °Ul | Function: if load(t) then

—A> Register " out (t+1) = in (t)

VAN

else
out (t+1) = out (t)

Instructor: Muhammad Arif Butt, Ph.D. 24

2 HDL for 16-bit Register
load |on
in —<»|[Bit][Bit| - - - [Bit|—<» out DFFTH

Register.hdl w A w
/%%
* 1lb-bit register:
* Tf load[t] == 1 then out[t+l] = in[t]
* else out does not change icgrp mit
* / IN in, load;
OUT out;
CHIP Register { PARTS : _
IN in[16], load; e R e
OUT out[16]; ’
PARTS:
Bit (in=1in[0], load=load, out=out[0]);
Bit (in=in[1l], load=load, out=out[l]);
Bit (in=in[2], load=load, out=out[2]);
Bit (in=in[3], load=load, out=out[3]);
Bit (in=in[1l5], load=load, out=out[1l5]);
}

Instructor: Muhammad Arif Butt, Ph.D. 25

‘=) 16-Bit Register Demo

Instructor: Muhammad Arif Butt, Ph.D. 26

Class Quiz:

load

XN

DFF

load

in —» Bit [out
Time 1 2 3
Load

0

1
in

0

1
out

0

out

|

Instructor: Muhammad Arif Butt, Ph.D.

27

Memory Overview

P |
Instructor: Muhammad Arif Butt, Ph.D. 28

‘&) Stored Program Concept

Computer System

CU
registers

Instructor: Muhammad Arif Butt, Ph.D. 29

Memorx Hierarchx

* Accessing a memory location is expensive, as we need to supply an address and
then read/write the contents of that location of memory. Moreover, moving the
memory contents into the CPU and vice versa also takes time

* Solution: Memory Hierarchy

Disk Memory

TN
S

Registers

Slower, Cheaper, Larger

Instructor: Muhammad Arif Butt, Ph.D. 30

Memory Unit

Registers

Example Size
16, 64-bit registers

Typical Speed

1 nanosecond

& Access Times of Memor

Cache memory

4 - 8 Megabytes (L1 and L2)

5-60 nanoseconds

Primary Storage

2 - 32+ Gigabytes

100-150 nanoseconds

Secondary Storage

500 Gigabytes — 4+ Terabytes

3-15 milliseconds

X
Instructor: Muhammad Arif Butt, Ph.D.

31

t MemorX Sizes/CaEacitX

Decimal Term Abbreviation Value Binary Term Abbreviation Value %Llarger

kilobyte KB 103 kibibyte KiB 210 2%
megabyte MB 106 mebibyte MiB 220 5%
Gigabyte GB 10° gibibyte GiB 230 7%
terabyte TB 1012 tebibyte TiB 240 10%"
petabyte PB 101> pebibyte PiB 2°0 13%

exabyte EB 1018 exabibyte EiB 260 15%
zettabyte ZB 1021 zebibyte ZiB 270 18%
yottabyte YB 1024 yobibyte YiB 280 21%

|

Instructor: Muhammad Arif Butt, Ph.D. 32

because 1rrespective of the RAM size, every word gets selected
instantaneously, at more or less the same time

It 1s also known as read/write memory as it allows CPU to read as well as
write data and instructions into it

RAM is a microchip implemented using semiconductors. There are two
categories of RAM

» Dynamic RAM (DRAM): It is made up of memory cells where each cell is
composed of one capacitor and one transistor. DRAM must be refreshed
continually to store information. The refresh operation occurs automatically
thousands of times per second. DRAM is slower and less-expensive

» Static RAM (SRAM): It retains the data as long as power is provided to the
memory chip. It needs not be refreshed periodically. SRAM uses multiple
transistors for each memory cell. It does not use capacitor. SRAM is often

used as cache memory due to its high speed. SRAM 1s more expensive than
DRAM

e |
Instructor: Muhammad Arif Butt, Ph.D. 3

‘& Multi-Byte Ordering
 All 32 bit machines load and store 32 bits of data (word) with each

operation. The question is how are the bytes of a multi-byte variable
ordered in memory?
* Consider a 32 bit variable having a value of 0x01234567, that needs to be
stored at address 0x100
* There are two conventions that the h/w designers can follow:
» Big Endian: Most significant byte is written at the lowest address

byte (MSB first). Used by MIPS and Internet
0x100 0Ox101 0x102 0x103
01 23 45 67

» Little Endian: Least significant byte is written at the lowest address
byte (LSB first). Used by x86 and ARM

0x100 0x101 0x102 0x103
67 45 23 01

Instructor: Muhammad Arif Butt, Ph.D. 4

Designing

Random Access Memory

P |
Instructor: Muhammad Arif Butt, Ph.D. 35

%
g\

" RAM is an array of n w-bit registers, equipped
with direct access circuitry. The number of
registers (n) and the width of each register (w)
are called the memory’s size and width
respectively

In simple words, you can think of RAM as a
sequence of n addressable registers with
addresses 0 to n-1

At any given time only one register in the RAM
1s selected. It 1s this register whose value is
available on out during a read operation.
Similarly, it is this register whose contents will
be over written during a write operation

Now to select a register we need its address.
Address width varies with the number of
registers/words in the RAM, e.g., for RAMS

the address size i1s 3 bits
k = Address bits = log n

load

|

RAM8
in 0| Register
ﬁ16;’ 1| Register

address
K| nt Register
direct access

logic

A

‘&) Design of RAM

out

16

#

Instructor: Muhammad Arif Butt, Ph.D.

36

N\

%,
%

At any given point of time: one register in the RAM is
selected, all the other registers are irrelevant

Read: To read the contents of register number i,

e Setaddress =1

load

l

* Result: The RAM’s output pin out emits the state aqgress

of the register i. This 1s a combinational operation,
independent of the clock

Write: To write a new data value d into register
number i,

e Setaddress =1
e Setin=d
e Setload=1

* Result: The state of register i becomes d and form
next clock cycle onwards, out emits d

|

Instructor: Muhammad Arif Butt, Ph.D.

RAMS8
in 0 Register
ya -
7 > .
16 1 Register
L
k n-1 Register
direct access
logic
AN
RAMS8 8
RAM64 64
RAM512 512
RAMA4K 4096
RAM16K 16384

&) Read/Write Logic of RAM

out

16

e Ol
& N
%

=) 8-Register/words RAM

RN

load
l Implementation tips:
" * Memory of 8 registers, each 16 bit-wide. Out holds the value stored at the memory

location specified by address. If load==1, then the in value is loaded into the memory
in © location specified by address (the loaded value will be emitted to out from the next

16 1 Register out time step onward)
5 ~* Feedthe 16 bitin value to all the registers, simultaneously
R * Write: Use DMux8Way chip to select one of the eight registers specified by address
K 7 |_Register * Read: Use Mux8Wayl16 chip to select the 16 bit contents of register specified by
address on 16 bit out output

address

direct access

logic - |
N\
_ J
16 - N
in —<——
_ J
() 16
out) =<
_z S J outl —
o () out2 —— 16
outd ——
load DMux8Way [—d L) outd Mux8Way16 out
‘; f) outs ——
I out6 —
g S - out7 — 3
3 —h - =
sel/address _) sel/address
()
_ J
()
_ J

Instructor: Muhammad Arif Butt, Ph.D. 38

%)\
)

load

l

RAM8

o [reamer]

16

1 Register

out

—r .,

Implementation tips:

2 8-Register/words RAM

* Memory of 8 registers, each 16 bit-wide. Out holds the value stored at the
memory location specified by address. If load==1, then the in value is loaded
into the memory location specified by address (the loaded value will be emitted
to out from the next time step onward)

Feed the 16 bitin value to all the registers, simultaneously

address 16 .]) .
» Use DMux8Way chip to select one of the eight registers specified by address
g ! [ﬂ] * Use Mux8Way16 chip to select the 16 bit contents of register specified by
direct access address on 16 bit out output
logic
RAMS.hdl A
load
CHIP RAMB { i
IN in[l1l6], load, address[3];
OUT out[16]; in —<»[Bit|[Bit Bit|—<» out
PARTS: w A w
DMux8Way (in=1locad, sel=address, a=load0, b=loadl, c=load2, d=load3, e=load4, f=load5, g=load6, h=load?);
Register (in=in, load=loadO, out=outO); CHIP Register {
Register (in=in, load=loadl, out=outl); Lan e, el
. : : OUT out[1l6];
Register (in=in, load=load2, out=out?2); PARTS :
Register (in=in, load=load3, out=out3); Bit(in=in[0], load=load, out=out[0]);

. . _ _ . Bit(in=in[1l], load=load, out=out[l]);
Register (in=in, load=load4, out=outid); Bit(in=in[2], load=load, out=out[2]);
Register (in=in, load=load5, out=out)b):; Bit(in=in[3], load=load, out=out[3]);
Register (in=in, load=load6, out=outo6); Bit(in=in[15], load=load, out=out[15]);
Register (in=in, load=load’7, out=out?):; }

Mux8Wayl6 (a=out0, b=outl, c=out2, d=out3, e=outéd4, f=outb5, g=out6, h=out7, sel=address, out=out);

e |
Instructor: Muhammad Arif Butt, Ph.D.

39

RAMS Demo

Instructor: Muhammad Arif Butt, Ph.D. 40

RAM &4

RAM64

RAM8

RAMS8

RAM64

RAMS8

RAM64

X
Instructor: Muhammad Arif Butt, Ph.D.

Designing Larger Size RAM ChiEs

RAMS512

Same technique

can be used to
implement RAMAK
and RAM16K

41

& 64-Register/words RAM

load . .
l Implementation tips:

* Memory of 64 registers, each 16 bit-wide. Out holds the value stored at the
RAMS8
memory location specified by address. If load==1, then the in value is loaded
in 0 into the memory location specified by address (the loaded value will be emitted
16 | 1| Register out to out from the next time step onward)
address L 76 ~ * Feedthe 16 bitin value to all the registers, simultaneously
» Use DMux8Way chip to select one of the eight registers specified by address
g ! [ﬂ] * Use Mux8Way16 chip to select the 16 bit contents of register specified by
direct access address on 16 bit out output
logic
RAM64.hdl o

CHIP RAM64 {
IN in[l6], load, address[6];
OUT out[l6];
PARTS:
DMux8Way (in=load, sel=address[3..5], a=load0, b=loadl, c=load2, d=load3, e=load4, f=load5, g=load6, h=load7);

RAMS8 (in=in, load=load0, address=address[0..2], out=outO);
RAMS8 (in=in, load=loadl, address=address[0..2], out=outl);
RAMS8 (in=in, load=load2, address=address[0..2], out=out2?);
RAMS8 (in=in, load=load3, address=address[0..2], out=out3);
RAMS8 (in=in, load=load4, address=address[0..2], out=outid);
RAMS8 (in=in, load=loadb, address=address[0..2], out=outb);
RAMS8 (in=in, load=load6, address=address[0..2], out=out6);
RAMS8 (in=in, load=load’7, address=address[0..2], out=out?);

Mux8Wayl6 (a=out0, b=outl, c=out2, d=out3, e=outéd4, f=outb5, g=out6, h=out7, sel=address[3..5], out=out):;

e |
Instructor: Muhammad Arif Butt, Ph.D. 42

load

l

RAM8

o [reamer]

16

address

1 Register

k

7 Register

direct access

out

& 512-Register/words RAM

Implementation tips:

* Memory of 512 registers, each 16 bit-wide. Out holds the value stored at the

memory location specified by address. If load==1, then the in value is loaded

into the memory location specified by address (the loaded value will be emitted

to out from the next time step onward)

Feed the 16 bitin value to all the registers, simultaneously

» Use DMux8Way chip to select one of the eight registers specified by address

* Use Mux8Way16 chip to select the 16 bit contents of register specified by
address on 16 bit out output

logic
RAMS512.hdl A
CHIP RAMS12 {
IN in[l6], load, address[9];
OUT out[lo];
PARTS:

DMux8Way (in=load, sel=address[6..8], a=loadOl,

RAMG4
RAMG4
RAMG4
RAM64 (in=in,

(in=in,
(
(
(
RAM64 (in=in,
(
(
(

in=in,
in=in,

RAM64
RAM64
RAM64

in=in,
in=in,
in=in,

Mux8Wayl6 (a=outO,

load=1lo0ado,
load=1loadl,
load=1locad?2,
load=1load3,
load=1locad4,
load=1loadb,
load=1loado,
load=1locad’,

b=outl,

b=loadl, c=load2, d=load3, e=load4, f=load5, g=load6, h=load?);
address=address[0..5], out=outO) ;
address=address[0..5], out=outl);
address=address[0..5], out=out?);
address=address[0..5], out=out3);
address=address[0..5], out=outd);
address=address[0..5], out=outb);
address=address[0..5], out=outo);
address=address[0..5], out=out?);
d=out3, e=out4d, f=outb5, g=out6, h=out7, sel=address[6..8], out=out);

c=out2,

|

Instructor: Muhammad Arif Butt, Ph.D.

43

4K-Register/w0rds RAM

load . .
l Implementation tips:

* Memory of 4K registers, each 16 bit-wide. Out holds the value stored at the
RAMS8
memory location specified by address. If load==1, then the in value is loaded
in 0 into the memory location specified by address (the loaded value will be emitted
16 | 1| Register out to out from the next time step onward)
address L [76 ~ * Feedthe 16 bitin value to all the registers, simultaneously
» Use DMux8Way chip to select one of the eight registers specified by address
g ! [ﬂ] * Use Mux8Way16 chip to select the 16 bit contents of register specified by
direct access address on 16 bit out output
logic
RAM4K.hdl P

CHIP RAM4K {
IN in[l6], load, address[1l2];
OUT out[1l6];

PARTS:
DMux8Way (in=load, sel=address[9..11], a=load0, b=loadl, c=locad2, d=locad3, e=load4, f=load5, g=load6, h=load7);

RAM512 (in=1in, load=load0, address=address[0..8], out=outO);
RAM512 (in=1in, load=loadl, address=address[0..8], out=outl):;
RAM512 (in=1in, load=load2?2, address=address[0..8], out=out?2);
RAM512 (in=1in, load=load3, address=address[0..8], out=out3):;
RAM512 (in=1in, load=load4, address=address[0..8], out=outd):;
RAM512 (in=1in, load=load5, address=address[0..8], out=outh):;
RAM512 (in=1in, load=load6, address=address[0..8], out=outo):;
RAM512 (in=1in, load=load’7, address=address[0..8], out=out?):;

Mux8Wayl6 (a=out0, b=outl, c=out2, d=out3, e=outéd4, f=outb5, g=out6, h=out7, sel=address[9..11], out=out);

e |
Instructor: Muhammad Arif Butt, Ph.D. a4

16K-Register/w0rds RAM

load . .
l Implementation tips:

* Memory of 16K registers, each 16 bit-wide. Out holds the value stored at the

RAMS memory location specified by address. If load==1, then the in value is loaded
in 0 into the memory location specified by address (the loaded value will be emitted
- [:] to out from the next time step onward)
16 1 Register out

address

* Feed the 16 bitin value to all the registers, simultaneously
16« Use DMux8Way chip to select one of the eight registers specified by address

k

RAM16K.hdl

: * Use Mux8Way16 chip to select the 16 bit contents of register specified by
7| R
ﬂ] address on 16 bit out output

direct access
logic
AN

CHIP RAMIG6GK {
IN in[le],

PARTS:

RAM4K

RAM4K
RAM4K

(in=in, load=loadO, address=address]|O0.]) ;
RAM4K (in=in, load=loadl, address=address[0..11], out= outl),
(in=in, load=load2, address=address|[0]) ;
(in=in, load=load3, address=address|[0]) ;

load, address[14];

OUT out[lo];

DMux4Way (in=load, sel=address[12..13], a=load0, b=loadl, c=load2, d=load3);

4

4

, out=out3

4

Mux4Wayl6 (a=out0, b=outl, c=out2, d=out3, sel=address[1l2..13], out=out);

e |
Instructor: Muhammad Arif Butt, Ph.D. 4

Counters

P |
Instructor: Muhammad Arif Butt, Ph.D. 46

Overview of Counters

A counter is a special type of register that goes through a pre-determined sequence
of states upon the application of input pulses

Counters are used for:
* Counting the number of occurrences of an event
* Keeping time or calculating amount of time between events
* Baud rate generation
A w-bit counter consists of two main elements:
* A w-bit register to store a w-bit value
* A combinational logic to
* Compute the next value (according to a specific counting function)
* Load a new value of user/programmer choice
* Reset the counter to a default value

Examples:

* Simple Up/Down Binary Counters
* BCD Counter(s)

e Gray Code Counter

* Ring Counter

e Johnson Counter
—

Instructor: Muhammad Arif Butt, Ph.D. 47

&) Why we Need Counter Chip for Hack CPU

Computer System

CU
registers

Instructor: Muhammad Arif Butt, Ph.D. 48

‘& Why we Need Counter Chip for Hack CPU
* Consider a counter chip designed to contain the address of the
instruction that the computer should fetch and execute next

* In most cases, the counter has to simply increment itself by 1 1n each
clock cycle, thus causing the computer to fetch the next istruction in
the program

* In other cases, we may want the program to jump to an instruction at
memory address n, so the programmer want to set the counter to a
value of n, rather than its default counting behavior with n+1, n+2,
and so forth

* Finally, the program’s execution can be restarted anytime by resetting
the counter to 0, assuming that the address of the program’s first
Instruction

* In short, we need a loadable and resettable counter

e |
Instructor: Muhammad Arif Butt, Ph.D. 49

Program Counter Register

. Every computer has a special register called the Program Counter,
normally called the PC, which keeps track of the instruction to be
fetched and executed next

The PC 1s designed to support three possible control operations:

 Reset: Fetch the first instruction PC =0

 Next: Fetch the next instruction PCi+

 Goto: Fetch instruction at address n | pc

Il
=]

Instructor: Muhammad Arif Butt, Ph.D. 20

Counter Abstraction

load inc reset
in out
—A > PC -
16 16
VAN

1f reset[t] = 1 then

PC=0
out[t+1l] = 0
else 1f load[t] = 1 then
PC = in
out[t+1] = in[t]
else 1f inc[t] = 1 then
PC++
out[t+1l] = out[t] + 1

else out[t+1l] = out[t] //do nothing

e |
Instructor: Muhammad Arif Butt, Ph.D. o1

inc

!

load

!

reset

!

w bits

PC (counter)

A

out . 47 . 47 @

reset

+> out

w bits

@ :

©V0OLLUYLEY

load

inc

in§5

cycle ‘ '

527

527

27 | 527 | 527 | 527 | 527 |
' _ : : — : 6
22 @ 24 @ 26

| 527

| 527

527

527 |

527

527 !

o o ~0 o o o 0 o >
27 2830 31 32'@'34

clock

A

A

A

A

N

A

A

A

4

A

4

A

A

A\

A

A

A

A

N

A

A

Instructor: Muhammad Arif Butt, Ph.D.

!

load

l

16 Bit Program Counter ImElementation

inc reset

16

l l out

PC _f74__>

16
VAN

CHIP Register ({
IN in[16], load;
OUT out[l6];
PARTS:

Bit(in=in[0], load=load, out=out[O0]) ;
Bit(in=in[1], load=load, out=out[l]) ;
Bit(in=in[2], load=load, out=out[2]) ;
Bit(in=in[3], load=load, out=out[3]) ;

Bit(in=in[15], load=load, out=out[15]) ;

CHIP Inclé6é {
IN in[l6];
OUT out[1l6];
PARTS:
Addl6 (a=in, b[0]=true, out=out)

}
CHIP Bit {
IN in, load;
OUT out;
PARTS:

Mux (a=sendBack, b=in, sel=load, out=MuxOut) ;
DFF (in=MuxOut, out=sendBack, out=out) ;

CHIP Addl6 {

IN a[l6], b[1l6];

OUT out[16];

PARTS:

HalfAdder (a=a[0], b=b[0], sum=out[0], carry=carryO) ;
FullAdder (a=a[l], b=b[1l], c=carry0, sum=out[l], carry=carryl)
FullAdder (a=a[2], b=b[2], c=carryl, sum=out[2], carry=carry?);
FullAdder (a=a[3], b=b[3], c=carry2, sum=out[3], carry=carry3);
FullAdder (a=a[14], b=b[14], c=carryl3, sum=out[1l4], carry=carryl4);
FullAdder (a=a[15], b=b[15], c=carryl4, sum=out[1l5], carry=carryl5);

e |
Instructor: Muhammad Arif Butt, Ph.D. 23

I\

%,
%

&' 16 Bit Program Counter Implementation

load inc reset
in out
—~ > PC —F—
16 16
PC.hdl A
CHIP Mux1l6 {
CHIP PC { IN a[l6], b[1l6], sel;
IN in[16], load, inc, reset; oamra. el
. Mux (a=a[0], b=b[0], sel=sel, out=out[0])
OUT out [1 6] v Mux (a=a[l], b=b[l], sel=sel, out=out[l])
. Mux (a=a[l], b=b[15], sel=sel, out=out[1l5])
PARTS::)

Incl6 (in=regContent, out=incremented);
//if (inc == 1)
Mux16 (a=regContent, b=incremented, sel=inc, out=valuel);
//else if (load == 1)
Muxl6 (a=valuel, b=in, sel=load, out=value?);
//else if (reset == 1)
Muxl6 (a=value?2, b=false, sel=reset, out=value3l);
//else

Register (in=value3, load=true, out=regContent, out=out);

1
Instructor: Muhammad Arif Butt, Ph.D. >4

) Program Counter Demo

Instructor: Muhammad Arif Butt, Ph.D. 22

the .hdl, .tst and .cmp files of above chips from
the course bitbucket repository:

https://bitbucket.org/arifpucit/coal-repo/

* Interested students should also try to design,
implement and simulate binary down counter,
cascaded BCD counter, Gray Counter, Ring
counter, and Johnson counter

Coming to office hours does NOT mean you are academically weak!

Instructor: Muhammad Arif Butt, Ph.D. 26

https://bitbucket.org/arifpucit/
https://bitbucket.org/arifpucit/coal-repo/

