
Lecture # 19-20
Registers, Memory and Counters

Digital Logic Design

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001

1111110000010000

0000000000010000

1110001100001000

https://www.nand2tetris.org/
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

• Review of Sequential Chips
• What are Registers?
• Design and HDL of 1-bit to 16-bit Registers

• Concept of Memory Hierarchy

• Multi-Byte Read/Write

• Design and HDL of Random Access Memory (8, 64, 512, 4K, 16K words)

• What are Counters?

• Why do we need Counter for our Hack Computer

• Concept of Program Counter

• Design and Implementation of PC for Hack Computer

• Demo on H/W Simulator

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Review of Sequential Chips

Instructor: Muhammad Arif Butt, Ph.D.

state(t) = f (state(t-1), input(t))

• Sequential chips are capable of maintaining state, and, optionally acting on the state, and on the
current input

• The simplest and most elementary sequential chip is DFF, which maintain a state, i.e., the value
of the input from the previous time unit

• Using DFF we can design registers, and using registers we can design RAM, whose state is the
current values of all its registers. Given an address, the RAM emits the value of the selected
register

• All combinational chips are constructed from NAND gates, while all sequential chips are
constructed from DFF gates, and combinational chips

4

CPU Registers

Instructor: Muhammad Arif Butt, Ph.D.

5

CPU Registers

Instructor: Muhammad Arif Butt, Ph.D.

• A register is a small memory place inside the CPU that may hold data, memory address or
instruction

• The size of registers in a 64-bit computer must be of 64 bits
• In our Hack computer is a 16 bit computer, so the registers we are going to design will be of

16 bits
• There are several different classes of CPU registers which works in coordination with the

computer memory to run operations efficiently. (More on it later)

4

The Computer System

Instructor: Muhammad Arif Butt, Ph.D.

ALU

Computer System

memory

Memory CPU

CU

outputintput

Registers

6

1-Bit Register

Instructor: Muhammad Arif Butt, Ph.D.

7Instructor: Muhammad Arif Butt, Ph.D.

• A single-bit register, which we call Bit, or binary cell, is designed to store a single
bit of information (0 or 1)

• The chip interface diagram shows that it has two input pins and one output pin.
The input pin carries a data bit, the load pin enables the cell for writes, and an
output pin that emits the current state of the cell

• When you read the out pin of the binary cell, you will always get whatever is the
state of the binary cell

• To write the binary cell, we set the load bit to 1, now what ever is there on the
input bit will be stored inside the binary cell and will be available on the out pin in
the next clock cycle

• When the load bit is zero, the chip keep remembering the last input that was
loaded into it for infinity until a new load operation is performed

1-Bit Register API
load

in Bit outin Bit

8

Sequential Chips: 1-Bit Register

Instructor: Muhammad Arif Butt, Ph.D.

load

in Bit

• Goal: Remember an input bit forever, until requested to load a new
value

• More accurately:
• Stores a bit until...
• Instructed to load, and store, another bit

outin Bit

Chip name: Bit
Inputs: in, load
Outputs: out
Function: If load(t) then

out(t+1) = in(t)
else
out(t+1) = out(t)

9

Sequential Chips: 1-Bit Register

Instructor: Muhammad Arif Butt, Ph.D.

load

in Bit outin Bit

1 2 3 4 5Time

out

in
1

0

1

0

?

1

0
Load

Chip name: Bit
Inputs: in, load
Outputs: out
Function: If load(t) then

out(t+1) = in(t)
else

out(t+1) = out(t)

10

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.

DFFin out

11

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.

Well, not so. The device shown in the middle of figure 3.1 is invalid. First, it is not
clear how we’ll ever be able to load this device with a new data value, since there are
no means to tell the DFF when to draw its input from the in wire and when from the
out wire. More generally, the rules of chip design dictate that internal pins must
have a fan-in of 1, meaning that they can be fed from a single source only.
The good thing about this thought experiment is that it leads us to the correct and

elegant solution shown in the right side of figure 3.1. In particular, a natural way to
resolve our input ambiguity is to introduce a multiplexor into the design. Further, the
‘‘select bit’’ of this multiplexor can become the ‘‘load bit’’ of the overall register chip:
If we want the register to start storing a new value, we can put this value in the in

input and set the load bit to 1; if we want the register to keep storing its internal
value until further notice, we can set the load bit to 0.
Once we have developed the basic mechanism for remembering a single bit over

time, we can easily construct arbitrarily wide registers. This can be achieved by
forming an array of as many single-bit registers as needed, creating a register that
holds multi-bit values (figure 3.2). The basic design parameter of such a register is its
width—the number of bits that it holds—e.g., 16, 32, or 64. The multi-bit contents of
such registers are typically referred to as words.

Memories Once we have the basic ability to represent words, we can proceed to
build memory banks of arbitrary length. As figure 3.3 shows, this can be done by
stacking together many registers to form a Random Access Memory RAM unit. The
term random access memory derives from the requirement that read/write operations

M
ux

load

DFF DFF DFF

out(t) = in(t–1) if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

1-bit register (Bit)Flip-flop

out(t) = out(t–1) ?
out(t) = in(t–1) ?

Invalid design

in out in out in out

Figure 3.1 From a DFF to a single-bit register. The small triangle represents the clock input.
This icon is used to state that the marked chip, as well as the overall chip that encapsulates it,
is time-dependent.

43 Sequential Logic

12

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	23

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out
1

time: 1 2 3 4 5

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

sendBack

13

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	24

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out
1

time: 1 2 3 4 5

load

in
out?

1
1

?

1

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

sendBack

14

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out

time: 1 2 3 4 5

1

load

in
out?

1
1

?

1

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

sendBack

15

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	26

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out1
1

0
1

1

time: 1 2 3 4 5

0

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

sendBack

16

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	27

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out1
1

0
1

1

time: 1 2 3 4 5

0

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

sendBack

17

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	28

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out1
1

0
0

1

time: 1 2 3 4 5

1

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

sendBack

18

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	29

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out0
0

0
0

0

time: 1 2 3 4 5

0

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

sendBack

19

Computers Are Flexible

Instructor: Muhammad Arif Butt, Ph.D.

DFF

M
U
X

load

in out0
0

0
0

0

time: 1 2 3 4 5

0

load

i n
out

1
0

0

1

1
0

ou t :

i n :
(example)

l oad:
(example)

Resulting behavior:
Stores and emits a
value, until instructed
to load (and store) a
new value

sendBack

20

HDL for 1-bit Register

Instructor: Muhammad Arif Butt, Ph.D.

/** 1-bit register:
* If load[t] == 1 then. //load input in the ff
* out[t+1] = in[t]
* else //out does not change
*/ (out[t+1] = out[t])

CHIP Bit {
IN in, load;
OUT out;

PARTS:
Mux(a=sendBack, b=in, sel=load, out=MuxOut);
DFF(in=MuxOut, out=sendBack, out=out);

}

Bit.hdl

DFF

M
U
X

load

in out0
0

0
0

0

0

load

i n
out

sendBack

21

1-Bit Register Demo

Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Interactive Testing
11/Bit.hdl

22

Multi-Bit Register

Instructor: Muhammad Arif Butt, Ph.D.

23

Multi-Bit Register

Instructor: Muhammad Arif Butt, Ph.D.

(multi-bit register)(1-bit register)

• A register is actually a group of flip-flops, each flip flop capable of storing one bit
of information

• An n-bit register consists of a group of n flip-flops capable of storing n bits of
binary information. In this course we will focus on designing of 16-bit registers for
our computer

• A 16 bit register can be created from an array of 16 1-bit registers

Bit out

load

in

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

. . .Bit

w-bit register

out

load

Binary cell (Bit)

in
w w

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

Bit Bit

Figure 3.2 From single-bit to multi-bit registers. A multi-bit register of width w can be con-
structed from an array of w 1-bit chips. The operating functions of both chips is exactly the
same, except that the ‘‘¼’’ assignments are single-bit and multi-bit, respectively.

load

(0 to n–1)
direct access logic

Register 0

Register 1

Register n–1

RAMn

..

.
Register 2

in out

(word) (word)

address

Figure 3.3 RAM chip (conceptual). The width and length of the RAM can vary.

44 Chapter 3

(multi-bit register)

24Instructor: Muhammad Arif Butt, Ph.D.

• The API of the 16 bit Register chip is essentially the same as the 1-bit register,
except that the input and output pins are designed to handle multi-bit values

• The interface diagram and API of a 16-bit register is shown below
• The Bit and Register chips have exactly the same read/write behavior:

• Read: To read the contents of a register, we simply probe its output
• Write: To write a new data value d into a register, we put d in the in input and

set the load input to 1. In the next clock cycle, the register commits to the new
data value, and its output starts emitting d, and it will keep emitting this new
value forever till the time we decide to write a new value in it

Chip name: Register
Inputs: in[16], load
Outputs: out[16]
Function: if load(t) then

out(t+1) = in(t)
else
out(t+1) = out(t)

16 Bit Register API

25

HDL for 16-bit Register

Instructor: Muhammad Arif Butt, Ph.D.

/**
* 16-bit register:
* If load[t] == 1 then out[t+1] = in[t]
* else out does not change
*/

CHIP Register {
IN in[16], load;
OUT out[16];

PARTS:
Bit(in=in[0], load=load, out=out[0]);
Bit(in=in[1], load=load, out=out[1]);
Bit(in=in[2], load=load, out=out[2]);
Bit(in=in[3], load=load, out=out[3]);

. . . .
Bit(in=in[15], load=load, out=out[15]);

}

Register.hdl
Bit out

load

in

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

. . .Bit

w-bit register

out

load

Binary cell (Bit)

in
w w

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

Bit Bit

Figure 3.2 From single-bit to multi-bit registers. A multi-bit register of width w can be con-
structed from an array of w 1-bit chips. The operating functions of both chips is exactly the
same, except that the ‘‘¼’’ assignments are single-bit and multi-bit, respectively.

load

(0 to n–1)
direct access logic

Register 0

Register 1

Register n–1

RAMn

..

.
Register 2

in out

(word) (word)

address

Figure 3.3 RAM chip (conceptual). The width and length of the RAM can vary.

44 Chapter 3

CHIP Bit {
IN in, load;
OUT out;

PARTS:
Mux(a=sendBack, b=in, sel=load, out=MuxOut);
DFF(in=MuxOut, out=sendBack, out=out);

}

28

HDL for 1-bit Register

Instructor: Muhammad Arif Butt, Ph.D.

/** 1-bit register:
* If load[t] == 1 then. //load input in the ff
* out[t+1] = in[t]
* else //out does not change
*/ (out[t+1] = out[t])

CHIP Bit {
IN in, load;
OUT out;

PARTS:
Mux(a=sendBack, b=in, sel=load, out=MuxOut);
DFF(in=MuxOut, out=sendBack, out=out);

}

Bit.hdl

DFF

M
U
X

load

in out

load

i n
out

sendBack

26

16-Bit Register Demo

Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Interactive Testing
11/Register.hdl

27

Class Quiz:

Instructor: Muhammad Arif Butt, Ph.D.

load

in Bit outin Bit

1 2 3 4 5Time

out

in
1

0

1

0

1

0
Load

12

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	23

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out
1

time: 1 2 3 4 5

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

28

Memory Overview

Instructor: Muhammad Arif Butt, Ph.D.

29

Stored Program Concept

Instructor: Muhammad Arif Butt, Ph.D.

ALU

Computer System

program

Memory CPU

registers

output

data

intput

CU

30

Memory Hierarchy

Instructor: Muhammad Arif Butt, Ph.D.

• Accessing a memory location is expensive, as we need to supply an address and
then read/write the contents of that location of memory. Moreover, moving the
memory contents into the CPU and vice versa also takes time

• Solution:Memory Hierarchy

�
�
�

ALU

Registers

�
�
�

�
�
�

CacheMemory
DiskMemory

Slower, Cheaper, Larger

Main MemoryCPU

31Instructor: Muhammad Arif Butt, Ph.D.

Memory Unit Example Size Typical Speed

Registers 16, 64-bit registers 1 nanosecond

Cache memory 4 - 8 Megabytes (L1 and L2) 5-60 nanoseconds

Primary Storage 2 - 32+ Gigabytes 100-150 nanoseconds

Secondary Storage 500 Gigabytes – 4+ Terabytes 3-15 milliseconds

Access Times of Memory

32Instructor: Muhammad Arif Butt, Ph.D.

Decimal Term Abbreviation Value Binary Term Abbreviation Value %Larger

kilobyte KB 103 kibibyte KiB 210 2%

megabyte MB 106 mebibyte MiB 220 5%

Gigabyte GB 109 gibibyte GiB 230 7%

terabyte TB 1012 tebibyte TiB 240 10%`

petabyte PB 1015 pebibyte PiB 250 13%

exabyte EB 1018 exabibyte EiB 260 15%

zettabyte ZB 1021 zebibyte ZiB 270 18%

yottabyte YB 1024 yobibyte YiB 280 21%

Memory Sizes/Capacity

33

Random Access Memory (RAM)

Instructor: Muhammad Arif Butt, Ph.D.

• The computer’s main memory is also called the Random Access Memory,
because irrespective of the RAM size, every word gets selected
instantaneously, at more or less the same time

• It is also known as read/write memory as it allows CPU to read as well as
write data and instructions into it

• RAM is a microchip implemented using semiconductors. There are two
categories of RAM
Ø Dynamic RAM (DRAM): It is made up of memory cells where each cell is

composed of one capacitor and one transistor. DRAM must be refreshed
continually to store information. The refresh operation occurs automatically
thousands of times per second. DRAM is slower and less-expensive

Ø Static RAM (SRAM): It retains the data as long as power is provided to the
memory chip. It needs not be refreshed periodically. SRAM uses multiple
transistors for each memory cell. It does not use capacitor. SRAM is often
used as cache memory due to its high speed. SRAM is more expensive than
DRAM

34

Multi-Byte Ordering

Instructor: Muhammad Arif Butt, Ph.D.

• All 32 bit machines load and store 32 bits of data (word) with each
operation. The question is how are the bytes of a multi-byte variable
ordered in memory?

• Consider a 32 bit variable having a value of 0x01234567, that needs to be
stored at address 0x100

• There are two conventions that the h/w designers can follow:
Ø Big Endian: Most significant byte is written at the lowest address

byte (MSB first). Used by MIPS and Internet

Ø Little Endian: Least significant byte is written at the lowest address
byte (LSB first). Used by x86 and ARM

01 23 45 67

67 45 23 01

0x100 0x101 0x102 0x103

0x100 0x101 0x102 0x103

35

Designing
Random Access Memory

Instructor: Muhammad Arif Butt, Ph.D.

36

Design of RAM

Instructor: Muhammad Arif Butt, Ph.D.

• RAM is an array of n w-bit registers, equipped
with direct access circuitry. The number of
registers (n) and the width of each register (w)
are called the memory’s size and width
respectively

• In simple words, you can think of RAM as a
sequence of n addressable registers with
addresses 0 to n-1

• At any given time only one register in the RAM
is selected. It is this register whose value is
available on out during a read operation.
Similarly, it is this register whose contents will
be over written during a write operation

• Now to select a register we need its address.
Address width varies with the number of
registers/words in the RAM, e.g., for RAM8
the address size is 3 bits

k = Address bits = log2n

37Instructor: Muhammad Arif Butt, Ph.D.

Chip Name Size (n) Address bits (k)

RAM8 8 3

RAM64 64 6

RAM512 512 9

RAM4K 4096 12

RAM16K 16384 14

• At any given point of time: one register in the RAM is
selected, all the other registers are irrelevant

• Read: To read the contents of register number i,
• Set address = i
• Result: The RAM’s output pin out emits the state

of the register i. This is a combinational operation,
independent of the clock

• Write: To write a new data value d into register
number i,
• Set address = i
• Set in = d
• Set load = 1
• Result: The state of register i becomes d and form

next clock cycle onwards, out emits d

Read/Write Logic of RAM

38Instructor: Muhammad Arif Butt, Ph.D.

8-Register/words RAM

3

sel/address

3

sel/address

a
b
c
d
e
f
g
h

out

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

load DMux8Way Mux8Way16
16

16
out0
out1
out2
out3
out4
out5
out6
out7

Implementation tips:
• Memory of 8 registers, each 16 bit-wide. Out holds the value stored at the memory
location specified by address. If load==1, then the in value is loaded into the memory
location specified by address (the loaded value will be emitted to out from the next
time step onward)

• Feed the 16 bit i n value to all the registers, simultaneously
• Write: Use DMux8Way chip to select one of the eight registers specified by address
• Read: Use Mux8Way16 chip to select the 16 bit contents of register specified by
address on 16 bit out output

in
16

39Instructor: Muhammad Arif Butt, Ph.D.

CHIP RAM8 {
IN in[16], load, address[3];
OUT out[16];
PARTS:
DMux8Way(in=load, sel=address, a=load0, b=load1, c=load2, d=load3, e=load4, f=load5, g=load6, h=load7);

Register(in=in, load=load0, out=out0);
Register(in=in, load=load1, out=out1);
Register(in=in, load=load2, out=out2);
Register(in=in, load=load3, out=out3);
Register(in=in, load=load4, out=out4);
Register(in=in, load=load5, out=out5);
Register(in=in, load=load6, out=out6);
Register(in=in, load=load7, out=out7);

Mux8Way16(a=out0, b=out1, c=out2, d=out3, e=out4, f=out5, g=out6, h=out7, sel=address, out=out);

}

RAM8.hdl

8-Register/words RAM

CHIP Register {
IN in[16], load;
OUT out[16];

PARTS:
Bit(in=in[0], load=load, out=out[0]);
Bit(in=in[1], load=load, out=out[1]);
Bit(in=in[2], load=load, out=out[2]);
Bit(in=in[3], load=load, out=out[3]);

. . . .
Bit(in=in[15], load=load, out=out[15]);

}

Implementation tips:
• Memory of 8 registers, each 16 bit-wide. Out holds the value stored at the
memory location specified by address. If load==1, then the in value is loaded
into the memory location specified by address (the loaded value will be emitted
to out from the next time step onward)

• Feed the 16 bit i n value to all the registers, simultaneously
• Use DMux8Way chip to select one of the eight registers specified by address
• Use Mux8Way16 chip to select the 16 bit contents of register specified by
address on 16 bit out output

Bit out

load

in

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

. . .Bit

w-bit register

out

load

Binary cell (Bit)

in
w w

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

Bit Bit

Figure 3.2 From single-bit to multi-bit registers. A multi-bit register of width w can be con-
structed from an array of w 1-bit chips. The operating functions of both chips is exactly the
same, except that the ‘‘¼’’ assignments are single-bit and multi-bit, respectively.

load

(0 to n–1)
direct access logic

Register 0

Register 1

Register n–1

RAMn

..

.
Register 2

in out

(word) (word)

address

Figure 3.3 RAM chip (conceptual). The width and length of the RAM can vary.

44 Chapter 3

40

RAM8 Demo

Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Interactive Testing
12/RAM8.hdl

41

Designing Larger Size RAM Chips

Instructor: Muhammad Arif Butt, Ph.D.

RAM8

RAM64

RAM512

Same technique
can be used to
implement RAM4K
and RAM16K

42Instructor: Muhammad Arif Butt, Ph.D.

CHIP RAM64 {
IN in[16], load, address[6];
OUT out[16];
PARTS:
DMux8Way(in=load, sel=address[3..5], a=load0, b=load1, c=load2, d=load3, e=load4, f=load5, g=load6, h=load7);

RAM8(in=in, load=load0, address=address[0..2], out=out0);
RAM8(in=in, load=load1, address=address[0..2], out=out1);
RAM8(in=in, load=load2, address=address[0..2], out=out2);
RAM8(in=in, load=load3, address=address[0..2], out=out3);
RAM8(in=in, load=load4, address=address[0..2], out=out4);
RAM8(in=in, load=load5, address=address[0..2], out=out5);
RAM8(in=in, load=load6, address=address[0..2], out=out6);
RAM8(in=in, load=load7, address=address[0..2], out=out7);

Mux8Way16(a=out0, b=out1, c=out2, d=out3, e=out4, f=out5, g=out6, h=out7, sel=address[3..5], out=out);

}

RAM64.hdl

64-Register/words RAM
Implementation tips:
• Memory of 64 registers, each 16 bit-wide. Out holds the value stored at the
memory location specified by address. If load==1, then the in value is loaded
into the memory location specified by address (the loaded value will be emitted
to out from the next time step onward)

• Feed the 16 bit i n value to all the registers, simultaneously
• Use DMux8Way chip to select one of the eight registers specified by address
• Use Mux8Way16 chip to select the 16 bit contents of register specified by
address on 16 bit out output

43Instructor: Muhammad Arif Butt, Ph.D.

CHIP RAM512 {
IN in[16], load, address[9];
OUT out[16];
PARTS:
DMux8Way(in=load, sel=address[6..8], a=load0, b=load1, c=load2, d=load3, e=load4, f=load5, g=load6, h=load7);

RAM64(in=in, load=load0, address=address[0..5], out=out0);
RAM64(in=in, load=load1, address=address[0..5], out=out1);
RAM64(in=in, load=load2, address=address[0..5], out=out2);
RAM64(in=in, load=load3, address=address[0..5], out=out3);
RAM64(in=in, load=load4, address=address[0..5], out=out4);
RAM64(in=in, load=load5, address=address[0..5], out=out5);
RAM64(in=in, load=load6, address=address[0..5], out=out6);
RAM64(in=in, load=load7, address=address[0..5], out=out7);

Mux8Way16(a=out0, b=out1, c=out2, d=out3, e=out4, f=out5, g=out6, h=out7, sel=address[6..8], out=out);

}

RAM512.hdl

512-Register/words RAM
Implementation tips:
• Memory of 512 registers, each 16 bit-wide. Out holds the value stored at the
memory location specified by address. If load==1, then the in value is loaded
into the memory location specified by address (the loaded value will be emitted
to out from the next time step onward)

• Feed the 16 bit i n value to all the registers, simultaneously
• Use DMux8Way chip to select one of the eight registers specified by address
• Use Mux8Way16 chip to select the 16 bit contents of register specified by
address on 16 bit out output

44Instructor: Muhammad Arif Butt, Ph.D.

CHIP RAM4K {
IN in[16], load, address[12];
OUT out[16];
PARTS:
DMux8Way(in=load, sel=address[9..11], a=load0, b=load1, c=load2, d=load3, e=load4, f=load5, g=load6, h=load7);

RAM512(in=in, load=load0, address=address[0..8], out=out0);
RAM512(in=in, load=load1, address=address[0..8], out=out1);
RAM512(in=in, load=load2, address=address[0..8], out=out2);
RAM512(in=in, load=load3, address=address[0..8], out=out3);
RAM512(in=in, load=load4, address=address[0..8], out=out4);
RAM512(in=in, load=load5, address=address[0..8], out=out5);
RAM512(in=in, load=load6, address=address[0..8], out=out6);
RAM512(in=in, load=load7, address=address[0..8], out=out7);

Mux8Way16(a=out0, b=out1, c=out2, d=out3, e=out4, f=out5, g=out6, h=out7, sel=address[9..11], out=out);
}

RAM4K.hdl

4K-Register/words RAM
Implementation tips:
• Memory of 4K registers, each 16 bit-wide. Out holds the value stored at the
memory location specified by address. If load==1, then the in value is loaded
into the memory location specified by address (the loaded value will be emitted
to out from the next time step onward)

• Feed the 16 bit i n value to all the registers, simultaneously
• Use DMux8Way chip to select one of the eight registers specified by address
• Use Mux8Way16 chip to select the 16 bit contents of register specified by
address on 16 bit out output

45Instructor: Muhammad Arif Butt, Ph.D.

CHIP RAM16K {
IN in[16], load, address[14];
OUT out[16];
PARTS:
DMux4Way(in=load, sel=address[12..13], a=load0, b=load1, c=load2, d=load3);

RAM4K(in=in, load=load0, address=address[0..11], out=out0);
RAM4K(in=in, load=load1, address=address[0..11], out=out1);
RAM4K(in=in, load=load2, address=address[0..11], out=out2);
RAM4K(in=in, load=load3, address=address[0..11], out=out3);

Mux4Way16(a=out0, b=out1, c=out2, d=out3, sel=address[12..13], out=out);
}

RAM16K.hdl

16K-Register/words RAM
Implementation tips:
• Memory of 16K registers, each 16 bit-wide. Out holds the value stored at the
memory location specified by address. If load==1, then the in value is loaded
into the memory location specified by address (the loaded value will be emitted
to out from the next time step onward)

• Feed the 16 bit i n value to all the registers, simultaneously
• Use DMux8Way chip to select one of the eight registers specified by address
• Use Mux8Way16 chip to select the 16 bit contents of register specified by
address on 16 bit out output

46

Counters

Instructor: Muhammad Arif Butt, Ph.D.

47

Overview of Counters

Instructor: Muhammad Arif Butt, Ph.D.

• A counter is a special type of register that goes through a pre-determined sequence
of states upon the application of input pulses

• Counters are used for:
• Counting the number of occurrences of an event
• Keeping time or calculating amount of time between events
• Baud rate generation

• Aw-bit counter consists of two main elements:
• A w-bit register to store a w-bit value
• A combinational logic to

• Compute the next value (according to a specific counting function)
• Load a new value of user/programmer choice
• Reset the counter to a default value

• Examples:
• Simple Up/Down Binary Counters
• BCD Counter(s)
• Gray Code Counter
• Ring Counter
• Johnson Counter

48Instructor: Muhammad Arif Butt, Ph.D.

ALU

Computer System

program

Memory CPU

registers

output

data

intput

CU

Why we Need Counter Chip for Hack CPU

49

Why we Need Counter Chip for Hack CPU

Instructor: Muhammad Arif Butt, Ph.D.

• Consider a counter chip designed to contain the address of the
instruction that the computer should fetch and execute next

• In most cases, the counter has to simply increment itself by 1 in each
clock cycle, thus causing the computer to fetch the next instruction in
the program

• In other cases, we may want the program to jump to an instruction at
memory address n, so the programmer want to set the counter to a
value of n, rather than its default counting behavior with n+1, n+2,
and so forth

• Finally, the program’s execution can be restarted anytime by resetting
the counter to 0, assuming that the address of the program’s first
instruction

• In short, we need a loadable and resettable counter

50

Program Counter Register

Instructor: Muhammad Arif Butt, Ph.D.

• Every computer has a special register called the Program Counter,
normally called the PC, which keeps track of the instruction to be
fetched and executed next

• The PC is designed to support three possible control operations:
• Reset: Fetch the first instruction

• Next: Fetch the next instruction

• Goto: Fetch instruction at address n

PC = 0

PC++

PC = n

51

Counter Abstraction

Instructor: Muhammad Arif Butt, Ph.D.

if reset[t] = 1 then

out[t+1] = 0

else if load[t] = 1 then

out[t+1] = in[t]

else if inc[t] = 1 then

out[t+1] = out[t] + 1

else out[t+1] = out[t] //do nothing

PC = in

PC = 0

PC++

52

Counter Simulation

Instructor: Muhammad Arif Butt, Ph.D.

PC (counter)
w bits

outin
w bits

inc load reset

Chip name: PC // 16-bit counter

Inputs: in[16], inc, load, reset

Outputs: out[16]

Function: If reset(t-1) then out(t)=0

else if load(t-1) then out(t)=in(t-1)

else if inc(t-1) then out(t)=out(t-1)+1

else out(t)=out(t-1)

Comment: "=" is 16-bit assignment.

"+" is 16-bit arithmetic addition.

47 47 0 0 1 2 3 4 527 528 529 530 530

527 527 527 527 527 527 527 527 527 527 527 527 527

reset

load

22 23 24 25 26 27 28 29 30 31 32 33 34

inc

clock

in

cycle

out

We assume that we start tracking the counter in time unit 22, when its input
and output happen to be 527 and 47, respectively. We also assume that the
counter’s control bits (reset, load, inc) start at 0 ---- all arbitrary assumptions.

Figure 3.5 Counter simulation. At time 23 a reset signal is issued, causing the counter to emit
0 in the following time unit. The 0 persists until an inc signal is issued at time 25, causing the
counter to start incrementing, one time unit later. The counting continues until, at time 29, the
load bit is asserted. Since the counter’s input holds the number 527, the counter is reset to that
value in the next time unit. Since inc is still asserted, the counter continues incrementing until
time 33, when inc is de-asserted.

51 Sequential Logic

PC (counter)
w bits

outin
w bits

inc load reset

Chip name: PC // 16-bit counter

Inputs: in[16], inc, load, reset

Outputs: out[16]

Function: If reset(t-1) then out(t)=0

else if load(t-1) then out(t)=in(t-1)

else if inc(t-1) then out(t)=out(t-1)+1

else out(t)=out(t-1)

Comment: "=" is 16-bit assignment.

"+" is 16-bit arithmetic addition.

47 47 0 0 1 2 3 4 527 528 529 530 530

527 527 527 527 527 527 527 527 527 527 527 527 527

reset

load

22 23 24 25 26 27 28 29 30 31 32 33 34

inc

clock

in

cycle

out

We assume that we start tracking the counter in time unit 22, when its input
and output happen to be 527 and 47, respectively. We also assume that the
counter’s control bits (reset, load, inc) start at 0 ---- all arbitrary assumptions.

Figure 3.5 Counter simulation. At time 23 a reset signal is issued, causing the counter to emit
0 in the following time unit. The 0 persists until an inc signal is issued at time 25, causing the
counter to start incrementing, one time unit later. The counting continues until, at time 29, the
load bit is asserted. Since the counter’s input holds the number 527, the counter is reset to that
value in the next time unit. Since inc is still asserted, the counter continues incrementing until
time 33, when inc is de-asserted.

51 Sequential Logic

PC (counter)
w bits

outin
w bits

inc load reset

Chip name: PC // 16-bit counter

Inputs: in[16], inc, load, reset

Outputs: out[16]

Function: If reset(t-1) then out(t)=0

else if load(t-1) then out(t)=in(t-1)

else if inc(t-1) then out(t)=out(t-1)+1

else out(t)=out(t-1)

Comment: "=" is 16-bit assignment.

"+" is 16-bit arithmetic addition.

47 47 0 0 1 2 3 4 527 528 529 530 530

527 527 527 527 527 527 527 527 527 527 527 527 527

reset

load

22 23 24 25 26 27 28 29 30 31 32 33 34

inc

clock

in

cycle

out

We assume that we start tracking the counter in time unit 22, when its input
and output happen to be 527 and 47, respectively. We also assume that the
counter’s control bits (reset, load, inc) start at 0 ---- all arbitrary assumptions.

Figure 3.5 Counter simulation. At time 23 a reset signal is issued, causing the counter to emit
0 in the following time unit. The 0 persists until an inc signal is issued at time 25, causing the
counter to start incrementing, one time unit later. The counting continues until, at time 29, the
load bit is asserted. Since the counter’s input holds the number 527, the counter is reset to that
value in the next time unit. Since inc is still asserted, the counter continues incrementing until
time 33, when inc is de-asserted.

51 Sequential Logic

53

16 Bit Program Counter Implementation

Instructor: Muhammad Arif Butt, Ph.D.

CHIP Bit {
IN in, load;
OUT out;

PARTS:
Mux(a=sendBack, b=in, sel=load, out=MuxOut);
DFF(in=MuxOut, out=sendBack, out=out);

}

CHIP Inc16 {
IN in[16];
OUT out[16];
PARTS:
Add16(a=in, b[0]=true, out=out);

}

CHIP Add16 {

IN a[16], b[16];

OUT out[16];

PARTS:

HalfAdder(a=a[0], b=b[0], sum=out[0], carry=carry0);

FullAdder(a=a[1], b=b[1], c=carry0, sum=out[1], carry=carry1);

FullAdder(a=a[2], b=b[2], c=carry1, sum=out[2], carry=carry2);

FullAdder(a=a[3], b=b[3], c=carry2, sum=out[3], carry=carry3);

………

FullAdder(a=a[14], b=b[14], c=carry13, sum=out[14], carry=carry14);

FullAdder(a=a[15], b=b[15], c=carry14, sum=out[15], carry=carry15);

}

CHIP Register {
IN in[16], load;
OUT out[16];

PARTS:
Bit(in=in[0], load=load, out=out[0]);
Bit(in=in[1], load=load, out=out[1]);
Bit(in=in[2], load=load, out=out[2]);
Bit(in=in[3], load=load, out=out[3]);

. . . .
Bit(in=in[15], load=load, out=out[15]);

}

54

16 Bit Program Counter Implementation

Instructor: Muhammad Arif Butt, Ph.D.

CHIP PC {
IN in[16], load, inc, reset;

OUT out[16];

PARTS:
Inc16(in=regContent, out=incremented);

//if (inc == 1)
Mux16(a=regContent, b=incremented, sel=inc, out=value1);

//else if (load == 1)

Mux16(a=value1, b=in, sel=load, out=value2);
//else if (reset == 1)

Mux16(a=value2, b=false, sel=reset, out=value3);
//else

Register(in=value3, load=true, out=regContent, out=out);

}

PC.hdl

CHIP Mux16 {
IN a[16], b[16], sel;
OUT out[16];
PARTS:
Mux(a=a[0], b=b[0], sel=sel, out=out[0]);
Mux(a=a[1], b=b[1], sel=sel, out=out[1]);

. . . .
Mux(a=a[1], b=b[15], sel=sel, out=out[15]);

}

55

Program Counter Demo

Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Interactive Testing
13/PC.hdl

56

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically weak!

• Perform testing of the chips designed in today’s
session on the h/w simulator. You can download
the .hdl, .tst and .cmp files of above chips from
the course bitbucket repository:

https://bitbucket.org/arifpucit/coal-repo/
• Interested students should also try to design,

implement and simulate binary down counter,
cascaded BCD counter, Gray Counter, Ring
counter, and Johnson counter

https://bitbucket.org/arifpucit/
https://bitbucket.org/arifpucit/coal-repo/

