
Lecture # 21
Instruction Set Architecture

Digital Logic Design

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001

1111110000010000

0000000000010000

1110001100001000

https://www.nand2tetris.org/
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

• Overview of Computer System
• Universality of Computer System
• Von Neumann Architecture
• Instruction Set Architecture (ISA)
• Five Dimensions of ISA

1. Class of ISA

2. Types and Sizes of Operands

3. Operations (including control flow instructions)

4. Memory Addressing Models and Addressing Modes

5. Encoding an ISA

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Overview of Computer System

Instructor: Muhammad Arif Butt, Ph.D.

ALU

program

Memory CPU

Registers

data CU

• A machine language is an agreed-upon formalism, designed to code low-level programs as a
series of machine instructions

• Using these instructions residing inside the Memory, the programmer can command the CPU
to fetch an instruction/data from memory/input device, perform arithmetic/logic operations on
that data, and finally store result inside the memory/output device. Moreover, data may need to
be moved from one Register to another and may need to test different Boolean conditions

4

Universality of
Computer Systems

Instructor: Muhammad Arif Butt, Ph.D.

5

Computers Are Flexible

Instructor: Muhammad Arif Butt, Ph.D.

• Most machines in the world
do one thing, e.g., washing
machine washes clothes, air
conditioners are used to
control temperature of a room

• On the other hand a computer
e.g., a smart phone can do
lots and lots of things, voice
communication, word
processing, playing games,
using internet, watch videos,
and so on

6

Universality

Instructor: Muhammad Arif Butt, Ph.D.

Theory Practice

Alan Turing: (1912 – 1954)

Universal Turing Machine (1936)
John Von Nuemann: (1903 – 1957)

Stored Program Computer

Same hardware can run many different software programs

7

Von Neumann Architecture

Instructor: Muhammad Arif Butt, Ph.D.

ALU

program

Memory CPU

registers

output

data

intput

The Von Neumann architecture is a computer architecture given by a mathematician and physicist John von
Neumann describes the design architecture for an electronic digital computer with these components:
Ø A Processing Unit that contains an ALU and registers
Ø A Control Unit that contains an instruction register and program counter
Ø A Memory unit that stores data and instructions
Ø An Input and Output mechanism
Ø An external mass storage

CU

8

Stored Program Concept

Instructor: Muhammad Arif Butt, Ph.D.

ALU

Memory CPU

Registers

0

1
2

...

n-1

n 1100101010010101

n+1 1100100101100111

n+2 0011001010101011

... ...

Program/
Instructions

Data

0101110011100110

1011000101010100

1110001011111100

...

intput output

Computer System

The main idea in the Von Neumann architecture is the stored program concept. We can
put the program inside the memory along with the data on which this program is going
to operate. This is how

Same hardware can run many different software programs

CU

9

Machine Language

Instructor: Muhammad Arif Butt, Ph.D.

ALU

Memory CPU
0 0101110011100110

1 1011000101010100

2 1110001011111100

... ...

n
n+1
n+2

...

1100101010010101

1100100101100111

0011001010101011

...
Registers

Data

Handling instructions:
• 1011means “addition”
• 000101010100 means “operate on memory address340”
• Next we have to execute the instruction at address 2

operation
addressing

current
instruction

intput

control

Computer System

Program

output

CU

10

Assembler and Mnemonics

Instructor: Muhammad Arif Butt, Ph.D.

Option 1:
• Use machine language, in which case a programmer should exactly know
the bit positions and their meanings

• Really difficult to write programs in machine language. No one do so these
days

add R3 R2
Sample instructionInstruction: 0100010 0011 0010

Option 2:
• Use symbolic machine language instructions, using assembly
language of the specific hardware, e.g., add R3 R2

• A bit easy to write programs in assembly language, but later someone has to
transform it to machine language

• A program called the assembler is used to translate the symbolic code into
machine code

11

Assembler and Symbols

Instructor: Muhammad Arif Butt, Ph.D.

Assembly Language:Machine Language:

add 1 Mem[129]

1010 0001 10000001 add 1, Mem[129]

• An instruction that instructs to add 1 to the contents of memory location 129,
may be encoded in the machine and assembly language like:

add 1, index

• For a programmer, it is a bit difficult to specify and memorize the memory
addresses for different purposes

• A more friendlier syntax can be used if we assume that the symbol index
stands for Mem[129]

• The assembler will resolve the symbol index into the specific memory address,
i.e., “index” Mem[129]

Assembly Language:

12

Dimensions of ISA

Instructor: Muhammad Arif Butt, Ph.D.

13

Instruction Set Architecture (ISA)

Instructor: Muhammad Arif Butt, Ph.D.

• Every computer has an Instruction Set Architecture (ISA), which is
the set of instructions, registers, memory space and other features
visible to the assembly language programmer

• It is an Interface between hardware and low-level software and
sometimes referred to as a machine language, although it is not
entirely accurate.

• Example ISAs: x86, ARM, MIPS, PowerPC, SPARC, RISC-V
• Five dimensions of ISA:

1. Class of ISA
2. Types and Sizes of Operands
3. Operations (including control flow instructions)
4. Memory Addressing Models and Addressing Modes
5. Encoding an ISA

14

1. Classes of ISA

Instructor: Muhammad Arif Butt, Ph.D.

15

Stack Based Machine

Instructor: Muhammad Arif Butt, Ph.D.

• Sample Code : a = (b+c)*d-e
push b
push c
add
push d
mul
push e
sub
pop a

• Attributes
Ø Short instructions
Ø Compiler is easy to write
Ø Inefficient code

• Example: Early machines are HP 3000/70. Today Java VM

1

1

Lecture 3: Instruction Set
Architecture

ISA types, register usage, memory
addressing, endian and alignment,
quantitative evaluation

2

What Is ISA?

Instruction set architecture is the structure
of a computer that a machine language
programmer (or a compiler) must understand
to write a correct (timing independent)
program for that machine.

For IBM System/360, 1964

Class ISA types: Stack, Accumulator, and
General-purpose register
ISA is mature and stable
� Why do we study it?

3

Stack

Implicit operands on stack
Ex. C = A + B
Push A
Push B
Add
Pop C
Good code density; used in
60’s-70’s; now in Java VM

4

Accumulator

The accumulator provides an
implicit input, and is the
implicit place to store the
result.

Ex. C = A + B

Load R1, A
Add R3, R1, B
Store R3, c
Used before 1980

5

General-purpose Registers

General-purpose registers are preferred by
compilers
� Reduce memory traffic
� Improve program speed
� Improve code density

Usage of general-purpose registers
� Holding temporal variables in expression evaluation
� Passing parameters
� Holding variables

GPR and RISC and CISC
� RISC ISA is extensively used for desktop, server, and

embedded: MIPS, PowerPC, UltraSPARC, ARM, MIPS16,
Thumb

� CISC: IBM 360/370, an VAX, Intel 80x86

6

Variants of GRP Architecture

Number of operands in ALU instructions: two or
three
Add R1, R2, R3 Add R1, R2

Maximal number of operands in ALU instructions:
zero, one, two, or three
Load R1, A Load R1, A
Load R2, B Add R3, R1, B
Add R3, R1, R2

Three popular combinations
� register-register (load-store): 0 memory, 3 operands
� register-memory: 1 memory, 2 operands
� memory-memory: 2 memories, 2 operands; or 3 memories, 3

operands

• Operands are implicit at the top of the stack for ALU operation. One operand
for push/pop. The result is also stored at top of stack. (Maximum number of
operands allowed is one)

16

Accumulator Based Machine

Instructor: Muhammad Arif Butt, Ph.D.

• Sample Code : a = (b+c)*d-e
load b

add c

mul d

sub e

store a

• Attributes
Ø Simple design
Ø Short instructions
Ø Many load, store instructions

• Example: Early machines are DEC PDP-8, IBM 7090. Today
used in DSP Processors

1

1

Lecture 3: Instruction Set
Architecture

ISA types, register usage, memory
addressing, endian and alignment,
quantitative evaluation

2

What Is ISA?

Instruction set architecture is the structure
of a computer that a machine language
programmer (or a compiler) must understand
to write a correct (timing independent)
program for that machine.

For IBM System/360, 1964

Class ISA types: Stack, Accumulator, and
General-purpose register
ISA is mature and stable
� Why do we study it?

3

Stack

Implicit operands on stack
Ex. C = A + B
Push A
Push B
Add
Pop C
Good code density; used in
60’s-70’s; now in Java VM

4

Accumulator

The accumulator provides an
implicit input, and is the
implicit place to store the
result.

Ex. C = A + B

Load R1, A
Add R3, R1, B
Store R3, c
Used before 1980

5

General-purpose Registers

General-purpose registers are preferred by
compilers
� Reduce memory traffic
� Improve program speed
� Improve code density

Usage of general-purpose registers
� Holding temporal variables in expression evaluation
� Passing parameters
� Holding variables

GPR and RISC and CISC
� RISC ISA is extensively used for desktop, server, and

embedded: MIPS, PowerPC, UltraSPARC, ARM, MIPS16,
Thumb

� CISC: IBM 360/370, an VAX, Intel 80x86

6

Variants of GRP Architecture

Number of operands in ALU instructions: two or
three
Add R1, R2, R3 Add R1, R2

Maximal number of operands in ALU instructions:
zero, one, two, or three
Load R1, A Load R1, A
Load R2, B Add R3, R1, B
Add R3, R1, R2

Three popular combinations
� register-register (load-store): 0 memory, 3 operands
� register-memory: 1 memory, 2 operands
� memory-memory: 2 memories, 2 operands; or 3 memories, 3

operands

• One operand is in the Accumulator register (implicit) and the other is in the
memory (explicit). The result is stored in the Accumulator. (Only one
operand allowed)

Accumulator

17

Register-Register/Load-Store Machine

Instructor: Muhammad Arif Butt, Ph.D.

• Sample Code : a = (b+c)*d-e

load r1, b
load r2, c
add r3, r1, r2
load r1, d
mul r4, r1, r3
load r1, e
sub r5, r4, r1
store r5, a

• Attributes
Ø Allows fast access to temporary values
Ø Reduced traffic to memory
Ø Simple fixed length instructions encoding
Ø Higher instruction count, and many load, store instructions

• Example: PDP-11, CRAY-1, MIPS, PowerPC, SPARC (RISC Arch)

2

7

Register-memory

There is no implicit operand
One input operand is
register, and one in memory
Ex. C = A + B
Load R1, A
Add R3, R1, B
Store R3, C

Processors include VAX,
80x86

8

Register-register (Load-store)

Both operands are registers
Values in memory must be
loaded into a register and
stored back
Ex. C = A + B
Load R1, A
Load R2, B
Add R3, R1, R2
Store R3, C

Processors: MIPS, SPARC

9

How Many Registers?
If the number of registers increase:

× Allocate more variables in registers (fast accesses)
× Reducing code spill
× Reducing memory traffic

Ø Longer register specifiers (difficult encoding)
Ø Increasing register access time (physical registers)
Ø More registers to save in context switch

MIPS64: 32 general-purpose registers

10

ISA and Performance
CPU time = #inst × CPI × cycle time

RISC with Register-Register instructions
× Simple, fix-length instruction encoding
× Simple code generation
× Regularity in CPI
Ø Higher instruction counts
Ø Lower instruction density

CISC with Register-memory instructions
× No extra load in accessing data in memory
× Easy encoding
Ø Operands being not equivalent
Ø Restricted #registers due to encoding memory address
Ø Irregularity in CPI

11

Memory Addressing
Instructions see registers, constant values, and memory

Addressing mode decides how to specify an object to access
� Object can be memory location, register, or a constant
� Memory addressing is complicated

Memory addressing involves many factors
� Memory addressing mode
� Object size
� byte ordering
� alignment

For a memory location, its effective address is calculated in a
certain form of register content, immediate address, and PC,
as specified by the addressing mode

12

Little or Big: Where to Start?
Byte ordering:
Where is the first
byte?
Big-endian:IBM,
SPARC, Mororola
Little-endian: Intel,
DEC
Supporting both:
MIPS, PowerPC

5
6
7
8

8
7
6
500000000

Big-endianLittle-endian

Number 0x5678

00000001
00000002
00000003

• Both operands are registers. Values in memory must be loaded into a register and
stored back (Maximum number of operands allowed are three)

18

Register-Memory Machine

Instructor: Muhammad Arif Butt, Ph.D.

• Sample Code : a = (b+c)*d-e
load r1, b

add r3 r1, c

mul r4, r3, d

sub r5, r4, e

store r5, a

• Attributes
Ø Small instruction count
Ø Instruction length varies
Ø Clock per instruction varies
Ø Harder to pipeline

• Example: IBM 360/370, Motorola 68000, VAX, 8086

2

7

Register-memory

There is no implicit operand
One input operand is
register, and one in memory
Ex. C = A + B
Load R1, A
Add R3, R1, B
Store R3, C

Processors include VAX,
80x86

8

Register-register (Load-store)

Both operands are registers
Values in memory must be
loaded into a register and
stored back
Ex. C = A + B
Load R1, A
Load R2, B
Add R3, R1, R2
Store R3, C

Processors: MIPS, SPARC

9

How Many Registers?
If the number of registers increase:

× Allocate more variables in registers (fast accesses)
× Reducing code spill
× Reducing memory traffic

Ø Longer register specifiers (difficult encoding)
Ø Increasing register access time (physical registers)
Ø More registers to save in context switch

MIPS64: 32 general-purpose registers

10

ISA and Performance
CPU time = #inst × CPI × cycle time

RISC with Register-Register instructions
× Simple, fix-length instruction encoding
× Simple code generation
× Regularity in CPI
Ø Higher instruction counts
Ø Lower instruction density

CISC with Register-memory instructions
× No extra load in accessing data in memory
× Easy encoding
Ø Operands being not equivalent
Ø Restricted #registers due to encoding memory address
Ø Irregularity in CPI

11

Memory Addressing
Instructions see registers, constant values, and memory

Addressing mode decides how to specify an object to access
� Object can be memory location, register, or a constant
� Memory addressing is complicated

Memory addressing involves many factors
� Memory addressing mode
� Object size
� byte ordering
� alignment

For a memory location, its effective address is calculated in a
certain form of register content, immediate address, and PC,
as specified by the addressing mode

12

Little or Big: Where to Start?
Byte ordering:
Where is the first
byte?
Big-endian:IBM,
SPARC, Mororola
Little-endian: Intel,
DEC
Supporting both:
MIPS, PowerPC

5
6
7
8

8
7
6
500000000

Big-endianLittle-endian

Number 0x5678

00000001
00000002
00000003

• There is no implicit operand, one input operand is in register and other is in
memory. (Maximum number of operands allowed are three)

19

2. Types & Sizes of
Operands

Instructor: Muhammad Arif Butt, Ph.D.

20

Types and Sizes of Operands

Instructor: Muhammad Arif Butt, Ph.D.

How is the type of the operand designated?
• The type of the operand is usually encoded in the opcode – e.g.,
• LDB–load byte
• LDW–load word

• Common operand types: (imply their sizes)
• Character (8 bits or 1 byte)
• Half word (16 bits or 2 bytes)
• Word (32 bits or 4 bytes)
• Double word (64 bits or 8 bytes)
• Single precision floating point (4 bytes or 1 word)
• Double precision floating point (8 bytes or 2 words)

21

Registers

Instructor: Muhammad Arif Butt, Ph.D.

• The smallest amount of memory that actually resides inside the CPU is called
Registers. Every CPU typically contains a few, easily accessed registers built from
the fastest technology available. Their number and functions are a central part of the
machine language

• Two most important registers that every architecture have are Instruction Pointer and
Instruction Register

ALU

CPU

�
�
�

Registers

Ø Program Counter / Instruction Pointer: This register stores the
address of the next instruction to be executed by the CPU

Ø Instruction Register: This register is used to contain and later
decode the instruction to be executed by the CPU

00100010 0011 0010

0000000000001001

22

Registers (cont…)

Instructor: Muhammad Arif Butt, Ph.D.

• Other than PC and IP, there are many other registers that are used to store data and
memory addresses. They are accessible to assembly language programmers and
their number vary from architecture to architecture

Data Registers: There are various data registers, which are used to
store temporary data during any ongoing operations. Their contents
can be accessed by the assembly programmer

Address Registers: These registers are used to hold the address of
the location to be accessed from memory

add R1, R2 12
23

R1:
R2:

Before
35
23

R1:
R2:

After

127

126

125

124

128

126
35

A:
R2:

store @A, R2

35

23

3. Operations

Instructor: Muhammad Arif Butt, Ph.D.

24

Machine Operations

Instructor: Muhammad Arif Butt, Ph.D.

Operator Type

Arithmetic and Logical Integer arithmetic and logical operations: add,
subtract, multiply, divide, and, or, not.

Data Transfer Move instructions with memory addressing
Control Branch, jump, procedure call, return, trap

System Synchronization, memory management
instructions

Floating Point Add, subtract, multiply, divide, compare
String String move, string compare, string search

Graphics Pixel and vertex operations, compression and
decompression operation

• Usually correspond to the operations that the hardware is designed to
support

• Most computers generally provide full set of operations for the first three
categories, i.e., arithmetic/logical, data transfer and control

25

Machine Operations (cont…)

Instructor: Muhammad Arif Butt, Ph.D.

• The basic operations that we are interested right now are:
Ø Arithmetic Operations: add, subtract, ….

ADD R2, R1, R3. // R2 <-- R1 + R3 where R1, R2, R3 are registers

ADD R2,R1,foo // R2 <-- R1 + foo where foo stands for the value of the memory
location pointed at by the user-defined label foo

Ø Logical Operations: and, not, or, ...
AND R1,R1,R2 // R1 <-- Bitwise AND of R1 and R2

Ø Flow Control: Flow control instructions change the flow of control, i.e.,
instead of executing the next instruction, the program branches to the
address specified in the branching instructions. Four types of control
instructions are conditional branches, unconditional branches, procedure
calls and procedure returns

goto 200 // shift the flow of control to instruction at address 200

if cond goto 200 //if true shift the flow of control to instruction at addr 200

26

4. Memory Addressing Models
&

Addressing Modes

Instructor: Muhammad Arif Butt, Ph.D.

27

Computer System

Instructor: Muhammad Arif Butt, Ph.D.

ALU

Memory CPU
0 0101110011100110

1 1011000101010100

2 1110001011111100

... ...

n
n+1
n+2

...

1100101010010101

1100100101100111

0011001010101011

...

registers

Data

current
instruction

intput

Computer System

Program

output

28Instructor: Muhammad Arif Butt, Ph.D.

• In assembly language programming, the term addressing modes refers to
the way in which the operand of an instruction is specified. Different
architectures support different addressing modes

• When an instruction requires two operands, the first operand is generally
the destination, which contains data in a register or memory location and
the second operand is the source. Generally, the source data remains
unaltered after the operation

• The four basic modes of addressing are:
Ø Register addressing mode
Ø Immediate Addressing mode
Ø Direct / Absolute addressing mode
Ø Register Indirect addressing mode

Addressing Modes

29

Addressing Modes Example

Instructor: Muhammad Arif Butt, Ph.D.

Register: In register addressing mode, both the operands are placed in general
purpose registers, and the register codes are specified in the instruction

add R1, R2 // R1 ß R1+ R2

200

250

60

350

450

700

500

800

50

300

65

99

348

349

350

398

399

400

499

500

750

800

1000

1001

R1 = 400, R2 = 50, R3 = 27, R4 = 60, R5 = 500

Immediate: In this mode, one operand is in register and other is part of the
instruction as a constant. Its limitation is that the range of constant/operand is
restricted by available bits in the instruction

add R3, 54 // R3 ß R3+ 54

Direct/Absolute: In this addressing mode, one operand is in register and the
other is in memory, whose effective address is part of the instruction

add R4, M[750] // R4 ß M[750] + R4

Register InDirect: In this addressing mode, one operand is in register and other
is in the memory, whose address is placed in a register, which is specified in the instr.

add R2, @R5 // R2 ß M[R5] + R2

30Instructor: Muhammad Arif Butt, Ph.D.

• The way a microprocessor need to read/write different memory locations,
similarly the microprocessor also need to read/write different I/O devices
like the keyboard, mouse, monitor, printer, etc. This linking is also be
called I/O Interfacing. An I/O interface acts as a communication channel
between the processor and the externally interfaced device. The interfacing
of the I/O devices can be done in two ways
• Memory Mapped I/O Interfacing: Both memory and I/O devices have
same address space. So addressing capability of memory become less
because some part is occupied by the I/O. In memory mapped I/O, there
are same read-write instructions for memory and I/O devices, so CPUs
are cheaper, faster and easier to build

• Isolated I/O Interfacing: The I/O devices are given a separate
addressing region (separate from the memory). These separate address
spaces are known as ‘Ports’. In isolated I/O, there are different read-
write instructions for memory and I/O devices. x86-64 use Isolated I/O

Note: Data can be transferred between CPU and I/O devices in three modes, namely Program
controlled I/O, Interrupt initiated I/O, and Direct Memory Access

Addressing the I/O Devices

31

5. Encoding of ISA

Instructor: Muhammad Arif Butt, Ph.D.

32

Encoding of ISA

Instructor: Muhammad Arif Butt, Ph.D.

• What is the size of an instructions
• Fixed length: MIPS
• Variable length: X86_64 (1-15 Bytes)

• How to encode the operations?
• How to encode the operands?
• How to encode the addressing modes?
• How to manage the flow control mechanism?

33

Real World ISAs

Instructor: Muhammad Arif Butt, Ph.D.

Architecture Type # Opr Data Size Registers Addr Size Use

x86 Reg-Mem 2 8/16/32/64 4/8/24 16/32/64 Personal
Computers

ARM Reg-Reg 3 32/64 16 32/64 Cell phones,
embedded

MIPS Reg-Reg 3 32/64 32 32/64 Work station,
embedded

Alpha Reg-Reg 3 64 32 64 Work station

SPARC Reg-Reg 3 32/64 24-32 32/64 Work station,
embedded

IBM360 Reg-Mem 2 32 16 24/31/64 Main frame

VAX Mem-Mem 3 32 16 32 Mini Computer

34

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically weak!

