P

/S
&

Digital Logic Design

Memory

data @ Rl
a —o CHIP Xor { program . > D_
\ IN a, b; ALY R
7 o e racton —} @temp

instruction

M=

O \\ ?/th aAnq\\Notb OUT out; "
_’out EARTS: - -
w. fota ; ot (in=a, out=nota); M““mptl
\ notaAndb Not (in=b, out=notb) ;
4/ And (a=nota, b=b, out=wl);
b — And (a=a, b=notb, out=w2);

0000000000000001
Or (a=wl, b=w2, out=out);
} 1111110000010000
0000000000010000
25 1110001100001000
Interfacing 1/0 Devices
global main
SECTION .data
msg: db "Learning is fun with Arif", O0Ah, Oh
len msg: equ $ - msg 0: b8 01 00 00 0O
SECTION . text 5: bf 01 00 00 00
#include<stdio.h> oy rax, 1 a: 48 be 00 00 00 00 00
#include<stdlib.h> mov rdi,1 11: 00 00 00

int main () { mey ESL,mEg) 14: ba 1b 00 00 00
Hl mov rdx,len_msg 19: 0f 05

printf ("Learning is fun with Arif\n"); —

exit (0); e Ees, 60 1b: b8 3c 00 00 00
} mov rdi, 0 20: bf 00 00 00 0O
syscall 25: 0f 05

Slides of first half of the course are adapted from:

https://www.nand2tetris.org

Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6 XpZUh3X2dPR 100MUE/view

Instructor: Muhammad Arif Butt, Ph.D.

https://www.nand2tetris.org/
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

& Today’s Agenda
* How to interface I/0O devices with computer S5
* Interfacing Screen with Hack computer

— Demo of built-in Screen chip on h/w Simulator

* Interfacing Keyboard with Hack computer

— Demo of built-in Keyboard chip on h/w Simulator

* Assembly Programming with Screen using CPU Emulator

* Assembly Programming with KBD using CPU Emulator

Instructor: Muhammad Arif Butt, Ph.D. 2

Input / Output

irl?f)r:: - data Hello, Screen: used to
ROM _ CPU ‘ RAM N worlq display outputs
= S
R SO
\E/\ Keyboard: used to
- get data from user
I/0 Handling

* High Level Approach: Sophisticated software library functions are
used to display text/graphics on the monitor, read the keyboard,
read voice notes from mic and play the audio on speakers etc

* Low Level: Bits Manipulation

Instructor: Muhammad Arif Butt, Ph.D. 3

N

%
A
"""

Interfacing 1/0 Devices with a Computer

* The way a microprocessor need to read/write different memory locations,

similarly the microprocessor also need to read/write different I/O devices

like the keyboard, mouse, monitor, printer, etc. This linking is also be

called I/O Interfacing. An I/O interface acts as a communication channel

between the processor and the externally interfaced device. The interfacing

of the I/0 devices can be done in two ways

 Memory Mapped I/O Interfacing: Both memory and I/O devices have
same address space. So addressing capability of memory become less
because some part 1s occupied by the I/O. In memory mapped 1/O, there
are same read-write instructions for memory and I/O devices, so CPUs
are cheaper, faster and easier to build. Example is Hack CPU

* Isolated I/O Interfacing: The I/O devices are given a separate
addressing region (separate from the memory). These separate address
spaces are known as ‘Ports’. In 1solated I/O, there are different read-

write instructions for memory and I/O devices. x86-64 use Isolated 1/0
Note: Data can be transferred between CPU and I/O devices in three modes, namely Program
controlled I/O, Interrupt initiated I/O, and Direct Memory Access

Instructor: Muhammad Arif Butt, Ph.D. 4

Interfacing Screen with

Hack Computer

Instructor: Muhammad Arif Butt, Ph.D.

G i
/&)\
/§ %\
£ 3

(5 b) %
=N MemOr Ma
IR Hi
(5 S|
|3 8
13 =
N\ U)
\ 7

ed Output

ROM

instructions

S

CPU

data

1

RAM

screen
memory
map

Screen Memory Map:

Screen memory map is a designated memory area, dedicated to manage a display unit

To write something on the display unit, write some bits in the designated memory area
(zero to make a pixel off/white and one to make a pixel on/black)

The physical display is continuously refreshed from the contents of memory map,

many times per second

Whatever, we write in the memory map makes the corresponding pixels of screen

black and white in the next refresh cycle

This 1s how we can write “Hello World” message on the screen
e

Instructor: Muhammad Arif Butt, Ph.D.

&' Screen Memory Map

Instructor: Muhammad Arif Butt, Ph.D. /

Screen Memory Map (1D MM to 2D Screen)

Memory Ma A sequence of 8K x 16 bit words . . .
Screen (Chipg 8192 words Black & White Display Unit

(16384) (
0| 1111010100000000 |) 131072 bits

* A matrix of 256 rows x 512 columns
* 131072 pixels

0 1 2 3 45 6 7 =+« 511

1 | 0000000000000000
. >r0w0 16 x32=512

— L

31 00110000000000 + *c (,511)
32 [0000101000000000 | O refresh
33 [0000000000000000 .

. >~ row 1

63 [0000000000000000 255

. (255,7)
. « Value of row can range from 0 to 255

« Value of col can range from 0 to 511
8159 | 0000000000000000

8160 101101@30m To set pixel (row.col) on/off
- row 235 word = Screen[32*row + col/16]
2191 | 00000001.00000000 word = RAM[16384 + 32*row + col/16]

(8K) Set (co0l%16)™ bit of word to 0 or 1
RAM[1] = word

Instructor: Muhammad Arif Butt, Ph.D. 8

0
Hack RAM
data
memory
(16K)
base address of the 16,384 screen
screen memory map memory map

24,575 8k
24576 | Keyboard MM |

The physical screen is of 256 rows and 512 columns which makes 256 x 512 = 131072 pixels

To map each pixel of screen on a single bit, the Screen memory map must contain 8K, 16 bits
words, which makes 8192 x 16 = 131072 bits

The built-in chip implementation has the side effect of continuously refreshing a visual 256 by
512 black-and-white screen, simulated by the simulator. Each row in the visual screen is
represented by 32 consecutive 16-bit words, starting at the top left corner of the visual screen.

e |
Instructor: Muhammad Arif Butt, Ph.D. ?

%

Memory
in Y
—— 16K
16 16,383 (16K)
16,384 Screen
(8K
memory
address 24,575 map)
—x—> 24576 Keyboard
15

‘@ Screen Built-in Chi

Load
in
TN out
Screen ——
16
out address
AN Hel
~5 o :

The built-in chip
implementation has the side
effect of continuously
refreshing a visual 256 by
512 black-and-white screen,
simulated by the simulator

CHIP Screen {
IN in[16], // what to write
load, // write-enable bit
address[13]; // where to read/write
OUT out[l6]; // Screen value at the given address
BUILTIN Screen;
CLOCKED in, load;

}

e |
Instructor: Muhammad Arif Butt, Ph.D. 1o

2 Screen Output Demo

Instructor: Muhammad Arif Butt, Ph.D. H

Interfacing Keyboard with

Hack Computer

P |
Instructor: Muhammad Arif Butt, Ph.D. =

Hack RAM

data
memory

(16K)

16,384 screen
memory map
8k

base address of the 24 576 | Keyboard MM
KBD memory map

* The physical keyboard requires just one word inside the Hack Memory, as it will contain the
ASCII code of the character pressed on keyboard.

* So the 16 bit word of Hack RAM at address 24576 is where the keyboard 1s mapped.

e |
Instructor: Muhammad Arif Butt, Ph.D. =

/

57

58

59

60

61

62

63

64

A | 65 97

66 98
C 99
Z |90 122
[|91 123
/|92 124
]| 93 125
N1 94 126
_ |95

96

newline

backspace
left arrow
up arrow
right arrow
down arrow
home

end

Page up
Page down
insert
delete

esc

f1

f12

128
129
130
131
132
133
134
135
136
137
138
139
140
141

152

|

Instructor: Muhammad Arif Butt, Ph.D.

14

Memorx MaEEed InEut

Esc || Fi || F2 |l Fa | Fa| | s | re |l Fz | Fa||Fo| Fro || Fi1 || Frz | [Pl serik||P2use/
SysRq Break

Keyboard - L’ £ 152 3 [2‘]5| IQ‘ Iél Ic’,‘ [:| I:‘)I:T—Tm [rome] e | [17
0000000000000000 . °°"| EFEPFFEIFFF]FER E’",_,"\
S |z ol S |) &

EE 2 [

—

When a key 1s pressed on the keyboard, the key’s scan code appears in the keyboard

memory map. Since no key i1s being pressed on the keyboard in this figure, so the
keyboard memory map contains all zeros

To check which key is currently pressed:

* Probe the contents of the Keyboard chip
 In the Hack computer: probe the contents of RAM[24576]

|

Instructor: Muhammad Arif Butt, Ph.D. =

Memorx MaEEed InEut

Esc F1 F2 || F3 F4 F5 F10 F11 F12 e NH ”P ause/

SysRq

~Tr e [# s % [~ [& [[C D |- [+ [J— ot |Home| Poup | | ™™
Keyboard [B2 k5L l7u\a 'lg o\o PI. {L)Imlm |

m,z_”o w |E [R T‘Y

e End

0000000010000011 F=r EPFE [I |= T

E TFFTPFFLELE | [

o | ey | Koy | Menu ¢‘_.‘

Scan-code of ‘k’ =75

When a key is pressed on the keyboard, the key’s scan code appears in the keyboard
memory map

To check which key is currently pressed:

* Probe the contents of the Keyboard chip
 In the Hack computer: probe the contents of RAM[24576]

|

Instructor: Muhammad Arif Butt, Ph.D. 16

Memorx MaEEed InEut

\E“HF‘II”IIFSH”H“H [HF"HF"IF“’H“lml"“s”\l oo

Keyboard |@ B ql%l = |‘ e

I Delete N

0000000000110100

pocl(A I

lzlllllllll'

Ctrl K"Mnnu ’4—‘ ‘—D‘

Scan-code of ‘4’ =35

When a key is pressed on the keyboard, the key’s scan code appears in the keyboard
memory map

To check which key is currently pressed:

* Probe the contents of the Keyboard chip
 In the Hack computer: probe the contents of RAM[24576]

|

Instructor: Muhammad Arif Butt, Ph.D. v

Kexboard Built-in ChiR

Memory
out
Keyboard Tb
in O RaM (‘5
16K —
—T g U B
16,384 Screen out
(8K —
memory 16
address 24,575 map)
) 24,576
15 Keyboard

CHIP Keyboard {

OUT out[1l6]; // The ASCII code of the pressed key,
// or 0 if no key is currently pressed,

// or one the special codes
BUILTIN Keyboard;

}
|

Instructor: Muhammad Arif Butt, Ph.D. 18

‘& Keyboard Input Demo

Instructor: Muhammad Arif Butt, Ph.D. 9

Hack Assembly
Programming involving 1/0

on
Hack CPU Emulator

Instructor: Muhammad Arif Butt, Ph.D. 20

£ CPU Emulator (1.4b3)
File View Run Help

Animate:
nn 0o

Vi
Staw Fast [Eome L”ﬁ/Simulated screen: 256 columns by 512 ‘

&y

>OPELEBRY .,

rows, black & white memory-mapped
rom [rom =] &3 [88 AN D& device. The pixels are continuously
; 2| . o] refreshed from respective bits in an 8K
: - : memory-map, located at RAM[16384] -
‘5‘ : E RAM[24575].
& & 0
7 7 0
3 g 0
g ? 0
10 10 0
11 11 0
1z alr 0
13 13 0
14 14 0
15 15 0 I
16 16 0
17 17 0
18 18 0
18 | D | 0
ZD .
T Simulated keyboard:
5 One click on this button causes the s
5 CPU emulator to intercept all the keys I 0 ALU output -
@ subsequently pressed on the real My Input . .
8 ,) | 0
computer’s keyboard; another click

I disengages the real keyboard from the
emulator.

'Script restarted

e |
Instructor: Muhammad Arif Butt, Ph.D. =

£ CPU Emulator (1.4b3)
File View Run Help

T JI : Animate: View: Format:

a ‘ > » . « ? Slow Fast IProgramﬂow ;”Screen L”Decimal ;I
vRou|Asm vlai‘jﬂ aﬂﬂ
0 & tls 1. Click the keyboard enabler
: : 2. Press some key on the
: L real keyboard, say “S”
2 ;
13 0
: : |
> ; o |]
§ 3. Watch here: \ T
20 » T\ |) Dinput .
Keyboard memory X — | 0
map 2 MA Input . &
(a single 16-bit = | | "
A 0

memory location)

[Script restarted

Instructor: Muhammad Arif Butt, Ph.D. =

I/0 Devices: Kevboard in Actlon

£ CPU Emulator (1.4b3)

ate:

View: Format:

‘Flle Run Heln
ﬁzpective: That’s how computer
programs read from the keyboard: they
peek some keyboard-oriented memory
device, one character at a time.

This is rather tedious in machine
language programming, but quite easy in
high-level languages that handle the
keyboard indirectly, using OS routines
like readLine Or readInt, as we will see
in Chapters 9 and 12.

Since all high level programs and OS

routines are eventually translated into
machine language, they all end up doing
something like this example. |

0

0

0

A 24569 0
22 ' 24570 0}
0

0

0

3 24571
24572
24573

Keyboard memory

24574

\am flow

map 24575 ol

24576 |

(a single 16-bit

memory location) .

L”Screen L”Decimal LI

Visual echo
(convenient GUI
effect, not part of the
hardware platform)

=101 x|

)
U

The emulator displays
Its character code in the
keyboard memory map

Script restarted

Instructor: Muhammad Arif Butt, Ph.D.

23

I/0 Devices: Screen in Action

/,'
/ Perspective: That's how computer :
ate: View: Format:

programs put images (text, pictures,
video) on the screen: they write bits into
some display-oriented memory device.

This is rather hard to do in machine
language programming, but quite easy
in high-level languages that write to the
screen indirectly, using OS routines like
printString Or drawCircle, as we
will see in chapters 9 and 12.

Since all high level programs and OS
routines are eventually translated into

machine language, they all end up
\doing something like this example. J

hram flow

>||screen >||pecimal =]

~

3. Built-in Refresh action:
The emulator draws the
corresponding pixels on the
screen. In this case, 16 black
pixels, one for each binary 1.

&

>

= I

19 | 14

20 : | 16383
=1

2 16385
23

vt
[
o o
Gy | Ly
@ |
-3

ololololoolf

L

PC | o‘ A | 16384

1l

Select a word in the RAM region

that serves as the screen memory
map, e.g. address 16384 (the first
word in the screen memory map).

Enter a value, say —1

(1111111111111111 in binary)/

=10x]

Instructor: Muhammad Arif Butt, Ph.D

24

Hack Assembly for

Input & Output

P |
Instructor: Muhammad Arif Butt, Ph.D. 25

%,
>

2

3

‘&) Drawing a Rectangle on The Screen

File View Run Help
— CJ Animate: View: Format:
@ » » . « ? éSI(I)w[: IFa'“ | Programflow +| | Scr... 3| | D... *
rom | - &)1 &8 RAM) &8)

" @ /0 . - s +«— 50 pixels long

1 D=M 1 0

2 @16 2 0 \

3 M=D 3 0

4 @7 4 o

5 e : 0 16 pixels wide

7 D=A 7 4}

Lo ! ’ Screen

9 M=D 9 4}

10 @17 10 4}

11 D=M 11 4}

12 @16 12 4}

13 D=D-M 13 4}

14 @27 14 (4}

15 D;J6T 15 0 ()

16 @18 16 50

17 A=M 17 51

18 M=-1 18 18016

19 @17 19 (4}

20 M=M+1 20 (4}

21 @32 21 4}

2 0-A 22 0 Task: draw a filled rectangle
23 @18 Code 23 (4}

2 WD 2 at the upper left corner of
25 @10 25 RAM . .
5 one s the screen, 16 pixels wide
28 0;IMP 28 o | and RAM[0] piXClS long
| PC 27| A 27|

|

Instructor: Muhammad Arif Butt, Ph.D. 26

Pseudo code

for (i=0; i<50; i++)

draw 16 black pixels at the beginning of row i

addr = 16384

n = RAM[O]
i=0
LOOP:
if 1 > n goto END
RAM[addr] = -1 //1111111111111111

// advances to the next row
addr = addr + 32

i=1i+1
goto LOOP

END:
goto END

Drawing a Rectangle on The Screen

RAM &8
16370 0
16371 0
16372 0
16373 0
16374 0
16375 0
16376 0
16377 0
16378 0 hvsical
16379 0 sica
16380 0 Py
16381 0 screen
16382 0
16383 0
[16384 [-] —
16385 0 e
16386 0
16387 0
0
16 black pixels, 0 D
corresponding to g
the first row of 0 serae
the rectangle 0
S 0 memory ut:
16395 0 1 —
16396 0 map
16397 0 M/A Input :
16398 0 27 —

A

27

|

Instructor: Muhammad Arif Butt, Ph.D.

27

%)\
P

& Drawing a Rectangle on The Screen

/* Program: Rectangle.asm

Draws a filled rectangle at the screen's
top left corner, with width of 16 pixels
and height of RAM[0] pixels.

Usage: put a non-negative number
(rectangle's height) in RAM[0] */

@RO

D=M

@n

M=D // n = RAM[O]

@i

M=0 // 1 =0

@SCREEN

D=A

@addr

M=D // addr = 16384 (screen’s base
address)

(LOOP)

//

//. ..
(LOOP)

@i

D=M

@n

D=D-M

QEND

D;JGT // if i>n goto END
@Qaddr

A=M

M=-1 //RAM[addr]=1111111111111111
@i

M=M+1 // i =1+ 1

@32

D=A

@Qaddr

M=D+M // addr = addr + 32
@LOOP

0;JMP // goto LOOP

(END)

@END // program’s end
0;IJMP // infinite loop

-

Instructor: Muhammad Arif Butt, Ph.D.

28

Drawing a Rectangle on The Screen

Instructor: Muhammad Arif Butt, Ph.D. 29

Example 2: £i11 .asm

O ® CPU Emulator (2.5) - /Users/arif/Documents/01 Arif-CS223-COAL/LectureSlides-Video Sessions/Lecture Codes/21/Fill.asm

File View Run Help

Q > ’ . ‘ Ty Animate:
EE : Slow Fast Noanimaton O
: : : Te—

ROM D ﬂ ‘ RAM D ﬂ ‘ o .
14 @20) 18432 Select No animation
15 0;IMP 1 0
16 @ 2)
17 M=0 3)
18 @0 4) . h
19 0;IMP 5 0 Listen to the keyboard
20 @l 6 0
21 D=M 7) ~
22 @0 8)
23 AM 9)
24 M=D 10)
25 @0 11)
26 D=M+l 12)
27 @24576 13)
28 D=A-D 14)
29 @0 15)
30 M=M+l 16 20
31 AM 17 5
32 @0 18 5
33 D;JGT 19 0 D 6144
34 @0 20 -1
35 0;IMP 21 -1
36 22 -1
37 23 -1 ALU
38 24 -1 D Input: a
39 25 0 s1s —| NO key is pressed so all
40 26)
41 27 0 il pixels of screen are white
42 28 0 20
PC 20 A 20 ‘
Running...
30

Instructor: Muhammad Arif Butt, Ph.D.

S

@®
=

PAS /4

&

)
v L J

File View Run

Example 2: £i11 .asm

CPU Emulator (2.5) - /Users/arif/Documents/01 Arif-CS223-COAL/LectureSlides-Video Sessions/Lecture Codes/21/Fill.asm

Help

s W . : Animate: View: ~ Format:
JJ § §§> <§<§ Z W SIL)W[[‘Falst No animation Scr... u D... u
rom & 8 O 8 RAM O 88

14 @20 0 18432
15 0;IMP 1 0
16 @l 2 0
17 M=0 3 0
18 @20 4 0
19 0;IMP 5 0
20 @l 6 0
21 D=M 7 0
22 @@ 8 0
23 AM 9 0
24 M=D 10 0
25 @@ 11 0
26 D=M+1 12 0
27 @4576 13 0
28 D=A-D 14 0
29 @0 15 0 | R+O+N
30 M=M+l 16 20
31 A=M 17 5
32 @0 18 5
33 D;JGT 19 0 D 6144
34 @0 20 -1
35 0;IMP 21 -1
36 22 -1
37 23 -1 ALU
38 24 -1 D Input : .
. 2 3 sus — When any key is pressed all
a1 27 0 Al pixels of screen becomes
42 28 0 20
PC 20 A 20 black

Running...

Instructor: Muhammad Arif Butt, Ph.D.

‘&) Fill: A Simple Interactive Program

Instructor: Muhammad Arif Butt, Ph.D. 32

Things To Do

0.k., and nowyou'll do
exactly what I'm telling you !

Instructor: Muhammad Arif Butt, Ph.D. 3

