CMP325
Operating Systems
Lecture 02

Introduction to Linux Environment

Muhammad Arif Butt, PhD

Note:

Some slides and/or pictures are adapted from course text book and Lecture slides of
« Dr Syed Mansoor Sarwar

* Dr Kubiatowicz

« DrP. Bhat

« Dr Hank Levy

* Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice following video lectures:

OS with Linux:

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ W1HADcXC44piWLRzr8
System Programming:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdIPAQTVIW

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

Today’s Agenda

Review of previous Lecture

Virtualization and Hypervisors

Introduction to Linux Distributions

Installing Linux on Sun Virtual Box

Interacting with Linux OS

Linux Shel

Linux File

Commands

Hierarchy Standard

Linux System Calls Interface

Compiling a C program in Linux

Concept of
Virtualization

file://Users/arifbutt/Documents/OS/Fall 15 OS/pre mid lectures/Linux Commands Slides/Lecture 7 (Partitioning, Formatting and Installation).pdf

Virtualization

 Virtualization is a framework or methodology of dividing the
resources of a computer system into multiple execution
environments

* A virtual machine is a s/w implementation of a machine that

m

2Xecutes progy

processes

|

e

A\ 4
kernel

hardware

rams like a physig

programming/
interface

~al machine
processes
processes
processes
kernel kernel kernel
VM1 VM2 VM3
virtual machine
manager
hardware

Implementation of VMMs/Hypervisors

« Type 2 hypervisors: Applications that run on
standard operating system (host OS), and provide
VMM features to guest operating systems. Examples:
Oracle VirtualBox, VMware Workstation and Fusion

« Type 1 hypervisors: Sits right on top of h/w, so
there is no concept of host OS. Guest OSs runs on
top of hypervisor. Examples: Oracle VMServer for
SPARC and x86, Vmware ESX, Critix XenServer, MS
Windows Server with HyperV, RedHat Linux with
KVM

« Type O hypervisors: Hardware-based solutions that
provide support for virtual machine creation and

management via firmware. Examples: IBM LPARs and
Oracle LDOMs

Other Variants of VMMs/Hypervisors

Paravirtualization: Technique in which the guest OS is
modified to work in cooperation with the VMM +to
optimize performance

Programming-environment virtualization: VMMs do
not virtualize real hardware but instead create an
optimized virtual system. Example: Oracle Java Virtual
Machine and Microsoft.Net

Emulators: Allow applications written for one
hardware environment to run on a very different
hardware environment, such as a different type of
CPU. Example is Qemu

Application containment: Not virtualization at all but
rather provides virtualization-like features by
segregating applications from the operating system,
making them more secure, manageable. Including
Oracle Solaris Zones BSD Jails

Architecture of Type2 Hypervisor

application application application application

guest operating guest operating guest operating
system system system

(free BSD) (Windows NT) (Windows XP)

virtual CPU virtual CPU virtual CPU

virtual memory virtual memory virtual memory

virtual devices virtual devices virtual devices

Virtual Machine 1 | | Virtual Machine 2 | | Virtual Machine 3
Hypervisor / Virtual Machine Manager

Y Y

host operating system
(Linux)

hardware

CPU memory I/O devices

Intro to Linux OS

file://Users/arifbutt/Documents/OS/Fall 15 OS/pre mid lectures/Linux Commands Slides/Lecture 7 (Partitioning, Formatting and Installation).pdf

History of UNIX

All modern operating systems have
their roots in 1969, when Dennis
Ritchie and Ken Thompson developed
the C language and the UNIX
operating system at AT&T Bell labs

Ken Thompson Dennis Ritchie

Since the source code of UNIX was widely available,
various organizations developed their own versions, which
led to chaos as far as UNIX history is concerned.

Two major versions developed:
« System V, from AT&T

« BSD (Berkley Software Distribution from UC Berkeley)
Minor variation includes FreeBSD, OpenBSD and NetBSD.

To make it possible to write programs that could run on
any UNIX system, IEEE developed a standard for UNIX,
called POSIX and later SUSv3, that most versions of
UNIX now support 9

History of Linux Kernel

« In 1991, Linus Torvald, a student of
university of Helsinki Finland, bought a
386 computer and tried to write a
brand new POSIX compliant kernel,
which became what we call Linux today

« Todays Linux run on:
« 97% of all world's super computers (including top 10)
« 80% of all smart phones
* Millions of desktop computers
« 70% of all web servers run on Linux

« Embedded Systems (routers, Rpi boards, self deriving cars,
washing machines etc)

« Source code of latest stable kernel (4.18.5) can be
downloaded from https://www.kernel.org

10

https://www.kernel.org/

Linux Distributions
A Linux distribution is a compilation of Linux Kernel
bundled with:
« System management tools
+ Server softwares
« Desktop applications
« Documentations
Some popular Linux distributions are:
Kali Linux (https://www.kali.org)
Red Hat (https://www.redhat.com/en)
Ubuntu (https://www.ubuntu.com)
CentOS (https://www.centos.org)
Debian (https://www.debian.org)
Linux Mint (https://www.linuxmint.com)
OpenSuSe (https://www.opensuse.org)

https://www.redhat.com/en)
https://www.redhat.com/en)
https://www.redhat.com/en)
https://www.redhat.com/en)
https://www.redhat.com/en)
https://www.redhat.com/en)
https://www.redhat.com/en)

UNIX is basically a Simple Operating System

But YOU have to be a GENIUS to understand the Simplicity

Dennis Ritchie

12

Linux Installation on
Sun Virtual Box

file://Users/arifbutt/Documents/OS/Fall 15 OS/pre mid lectures/Linux Commands Slides/Lecture 7 (Partitioning, Formatting and Installation).pdf

* & 99

New Setings Orscard Stan

M (& Saved
=¥ Ubuntu-Server
M & Saved
o Windows10
& Saved

WinXp
& Saved

Minix-320
& Saved

| vyatta
& Savec

=8 Cent0S
& Saved

BackTrack
& Saved

GnackTrack
& Saved

a RHELG

& Saved
“ %™ Ununtu-17
Pl & saves

2 Win81
& Saved

Pl prostar
& Saved

= General
Name: Kall-Uinux

Operating System: Ubuntu {64-bit)

4| System
Base Memnory; 3096 MB
Processors: 3

Boot Order: Fioppy, Optical, Hard Disk

Acceleration: VT-x/AMD-V, Nested Paging, KVM Paravirtualization

i Display

Video Memory: 16 M8
Remote Desktop Server: Disabled
Video Capture: Disabled
ul Storage

Controdler: IDE

|DE Secandary Master: [Optical Drive] Empty

Controfdier: SATA

SATA Port 0 Kali-Linuvdi (Normal, 100.00 GB}

¥ Audio
Host Deiver: CoreAucio
Controder: ICH AC97

=" Network

Adapter 1: intei PROM000 MT Desktop {Bridged Adapter, and; Wi-Fi (AirPort))

~ uss

USB Controfer: OWCH, EHC!
Device Fiers: 0 (0 active)
w Shared folders

Shared Folders: 1

+ Description

Nane

Contains 3 list of Virtaal Machine details

(il
i
Global Too's

Interacting with
Linux OS

file://Users/arifbutt/Documents/OS/Fall 15 OS/pre mid lectures/Linux Commands Slides/Lecture 7 (Partitioning, Formatting and Installation).pdf

Interacting with Linux OS

Option-l: Use a desktop/laptop computer of your own running
either a

* real Linux distribution, (may be dual boot)
* MS Windows operating system executing cigwin dll

e guest Linux operating system using some virtualization
software

Option-Il: You may like to remotely login using ssh, telnet, putty, or
some other remote login facility on PUCIT LAN
ssh username@l72.16.0.21

ssh username@l72.16.0.103

Option-Illl: You can also login using WAN on following machines as
well (if permitted)

ssh username@202.147.169.197 (Solaris11.0)

ssh username@202.147.169.196 (PCBSD)

Interacting with Linux OS
For a user of an operating system there are two types
of interfaces, using which a user can give commands to
perform various operations:
Graphical User Interface: GNOME, KDE, Unity, Xfce,
Enlightenment, Sugar
Command Line Interface: Also called a shell. A Linux
shell is an interactive program that accepts commands
from user via key board, parse them from left to right
and execute them. Most of the shells available in
todays Linux provides the features of executing user
commands and programs, I/O handling, programminng
ability (scripts and binaries). Example shells are
Bourne shell, Bourne Again Shell, C Shell, Korn Shell

Linux Shell Commands
A shell command can be internal/built-in or External

The code to execute an internal command is part of the
shell process, e.g., cd, dot, echo, pwd.

The code to process an external command resides in a file
in the form of a binary executable program file or a shell
script, eg., cat, ls, mkdir, more.

The general syntax of a shell command is
command [option(s)] [argument(s)]

After reading the command the shell determines whether
the command is internal or external

I't processes all internal commands by using the
corresponding code segments that are within its own code

To execute an external command, it searches the
command in the search path. Directories names stored in
the PATH variable. [echo $PATH]

Linux Shell Commands

who, whoami, finger, users

logout, exit, “D
alias, unalias
passwd, chfn

date

cal
clear
hostname
uname -a
man [-k]

apropos, mandb
whatis, updatedb
info

whereis filelist
which, type
watch

User information look up programs

Terminate the current shell session

Used to create/remove pseudonyms for commands
Used to change user password, user info

Prints or sets the system date and time

Displays calender for specific month or year

Clear the terminal screen

Display/set the system hostname

Prints system information

Displays online documentation (/usr/share/man/)
Searches the whatis database for strings
Searches the whatis database for complete words
Reads information documents

Locate binary(-b), source(-s), man pages(-m)
Locate cmd and display its pathname/alias

Used to execute a program every 2 seconds

19

Linux Shell Commands

cd
mkdir -[p], rmdir -[p]
pwd

Change directory
Create and remove a directory.
Display present working directory

cat, less, more, head, tail
file

wC

uniq

sort

cut

paste

grep

gzip, gunzip, bzip2, bunzip2

View contents of a file

Determines file type

Displays line, word, character count of file(s)

Report or omit repeated lines

Sort lines of files

Remove col(s) from tabular files (tab,collon,space)
Horizontally concatenate contents of two or more file
Prints lines of files where a pattern is matched
Compression and un-compression softwares

20

Linux Shell Commands
~ CommandsforFilesDis ~ Descripon

cp -[rpif] Copy files and directories

mv Move/rename files

rm -[rfi] Removes files/directories

stat Displays file/directory statistics

touch Update timestamp of a file/dir (coreutils)
find / -name mv Search a file based on attribute in a dir hierarchy
locate, updatedb Searches for the string in database(s)

1ls [-aldihFvStr] Displays calender for specific month or year
in Create soft/hard links

tar Archiving utility

chmod Change file mode bits

chown Change file ownership and group

umask Display/Set file mode creation mask

21

Linux Shell Commands

pipe, tee, mkfifo, mknod

bg, fg, kill

adduser

deluser -[remove-home]
addgroup, delgroup
usermod, groupmod

ps, top, uptime,
vmstat

nice, renice

shutdown

reboot, halt, poweroff
telinit

runlevel

sysv-rc-conf

cron, anacron

Used for IPC (pipes and fifos)

Send a signal to a process

To create or delete a user

Delete a user as well as his home directory
For creating/deleting a group

Modify a user/group information

To retrieve process related information
Display virtual memory status

To run/alter the nice value of a process (-20 to +19)
Bring the system down

Used to reboot or stop the system

Change system runlevel

Outputs previous and current runlevel
Used for startup service(s)

Used to scheduler commands

22

Linux Shell Commands

fdisk

df

du

free

mount [-t fstype] [dev] [mp]
cpio
script

lpr

stty

ar, ranlib
source
export

Manipulate disk partition table

Disk full, report file system diskspace usage
Estimate file space usage

Display amount of free and used memory in system
Mount a file system

Copy files to and from archives

Make typescript of terminal session

Print files

Change and print terminal line settings

For static libraries

Execute a script by the current interpreter
To export a variable into the environment

23

Linux Shell Commands

ping NW diagnostic tool

mesg Allows or disallows writing messages to screen
write <user> [tty] Allows realtime messaging between users on NW
telnet Remote login program

ssh Remote login program -SSH client

netstat Network statistics utility

scp Remote file copy program

service Command used to start/stop OS services

initectl Init daemon control tool

24

Linux Shell Commands

gcc, g++
gdb
indent
make

ar, ranlib
nm

strace

od

strip
objdump
objcopy
addr2line

C and C++ Compilst

GNU Debugger

Changes the appearance of a C program
Utility for managing large programs
Used for static libraries

List symbols from object files

Trace system calls and signals

Dump files in octal and other formats
Discard symbols from object files

Display information from object files
Copy and translate object files

Convert addresses into file names and line numbers

25

UNIX Manuals
» Don't expect to remember everything... I don't!

» Use man program to display help pages from
/usr/local/share/man/ directory having
further sub-directories each for following:

* 1- Shell commands; e.qg., mv, Is, cat, ...

« 2 - System calls; e.g., read(), write(), open(), ...

« 3 - Library cdlls; e.g., printf(), scanf(), ..

* 4 - Device & NW specific information

* 5 -File Formats; e.g., /etc/passwd, /etc/shadow,
* 6 - Games & demos; e.qg., fortune, worms, ...

« 7 - Miscellaneous; e.qg., ascii character map, ..

8 - Admin functions; e.g., fsck, network daemons

File Hierarchy Standard

Linux File Hierarchy Standard
All UNIX based OSs normally follow the FHS. To get

info of your file system hierarchy you can give the
command $man hier or can visit the following link

http://www.pathname.com/fhs/pub/fhs-2.3.pdf

Every thing that exist on your Linux system can be
found below the root (/) directory. Some important
directories are:

Binary Directories: bin, sbin, 1lib, opt
Configuration Directories: boot, etc

Data Directories: home, root, media, mnt, tmp
In-memory Directories: dev, proc, sys

System resources: usr

Variable data: var

http://www.pathname.com/fhs/pub/fhs-2.3.pdf

Linux
System Call Interface

OS Kernel

Kernel consists of everything
below the System Call interface Users

and above the physical h/w.
Kernel is the place where real Applications

work is done, it provides the
process mgmt, memory mgmt, I/0] OS API, AUI

mgmt, file mgmt, CPU scheduling,
and other OS functions. OS Kernel

Kernel is also called message
exchange, because no component | Computer H/W
can communicate without ift.

Kernel is never paged out of
memory and its execution is hever
preempted.

Types of Entry Points to Kernel

« Kernel code will be executed in one of the following
four occasions:

When a program makes a System Call.

When an I/0 device has generated an Interrupt; e.g. a
disk controller has generated an interrupt to CPU that
my reading is complete the data is now sitting in my
buffer, You can go and get it.

When a trap occurs; e.g. If a program has made a
division by zero, a trap will be generated which will
execute a different piece of code in kernel (TSR).

A signal comes to @ process. For that as well some piece
of kernel code willlbe executed.

System Call

Interrupt

System Call

A system call is the controlled entry point into the kernel

code, allowing a process to request the kernel to perform

a privileged operation. Before going into the details of how

a system call works, following points need to be understood:

A system call changes the processor state from user mode
to kernel mode, so that the CPU can access protected
kernel memory

* The set of system calls is fixed. Each system call is
identified by a unique number

 Each system call may have a set of arguments that specify
information to be transferred from user space to kernel
space and vice versa

 One must go through the man pages for better

understanding:
man 2 intro Intfroduction to Section 2 of man pages
man syscalls List of system calls (wrappers)
man syscall Used to invoke a syscall having no wrapper with its ID
man _syscall Macro used to make a system call (deprecated)

32

System Call (cont..)

 If aprocess is running a user program in user mode and
needs a system service, such as reading data from a file,
it has to execute a trap or system call instruction to
transfer control o the OS. The OS then figures out
what the calling process wants by inspecting the
parameters. Then it carries out the system call and
rel’rlurns control to the instruction following the system
call.

* Making a system call is similar to making a procedure call,
difference is that system call enter the kernel code and
procedure call do not.

user process
user mode

user process executing — calls system call return from system call (mode bit = 1)
\ /
L ¥
LY F
K I trap return
Sl mode bit=0 mode bit = 1

kernel mode
(mode bit = 0)

execute system call

System Call (cont..)

user application

open ()
user
mode
system call interface
kernel
mode A
| open ()
> Implementation
i » of open ()
- system call

return

34

System Call (.)
Types of System Calls

 Process Control

« End, abort

* Load, execute

 Create, terminate
Get/set process attributes
Allocate/de-allocate memory to processes

. Flle Management
Create, delete
Open, close
Read, write
Get/Set file attributes

 Information Maintenance

Get/Set date, time, or system data
« Get/set process, file or device attributes

« Communication
« Create/Delete communication connection
« Send/Receive message
« Attach/detach remote devices

All OS's offer their own System Calls

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject | Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close a file
read ReadFile Read data from a file
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer
stat GetFileAttributesEx Get various file attributes
mkdir CreateDirectory Create a new directory
rmdir RemoveDirectory Remove an empty directory
link (none) Win32 does not support links
unlink DeleteFile Destroy an existing file
mount (none) Win32 does not support mount
umount | (none) Win32 does not support mount
chdir SetCurrentDirectory | Change the current working directory
chmod (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetlLocalTime Get the current time

36

System Call vs Library Call

System Call Library Call
« Executed in the User
Program.

« Executed by OS kernel.

« Perform simple single * May perform several tasks

operation. and may call system calls.
« System calls usually return |+ Library functions often returr

an integer: pointers:
FILE * fp = fopen(“filel”, "r")
[Return NULL for failure

int res = sys_call(some_args)
If returnvalue >=0 (OK)

If returnvalue<Q (Error)

- UIVE FREE OR DIE ©

UNIX

¢ TRADEMARK OF BELL [ABS' ¢ —

38

Source code file(s)

Preprocessor® Interpret preprocessor directives
gce -E hello.c 1> hello.i (cpp) * Include header files
» Expand macros
Preprocessed code file(s) * Remove comments
[]
gcc -S hello.i Compiler » Checks for syntax errors
‘ (cc) * Converts the src to assembly
Assembly code file(s) of underlying processor
gcc -c hello.s Assembler « Generates relocatable object
<7 (as) files to be used by linker
Library Object code file(s) * Contains symbol table
libc .
Linker « Static vs Dynamic linking
gcc hello.o - exe 7 (1d) * Contains code and data for all

functions defined in src files

Executable file (myexe) + Contains global symbol table

[R

1|
[

. -

a2

Stored in secondary storage as an
executable image in a specific format

: i Loader

S gcc —-save-temps hello.c
Process Address
Space in main
memory

39

Compiling and Running € Programs

#include <stdio.h>
int main () {
printf (“Hello World \n”);

}
Use any editor to type your program and then to compile use gcc compiler:
$ gcc progl.c

This will create an executable file a.out in the pwd. Now to execute the file
$./a.out

If you just type $ a.out, it will say a.out not found. So either use ./ before the
exe name or add the current directory in the search path using following command

$ PATH=$PATH:.

Once you compile another program in the same directory, the executable name is
again a.out which will overwrite the previous executable file. To over come this use
-0 flag when compiling your source file.

$ gcc progl.c -o progl

Now this will create an executable file with the name as the second argument i.e.,
progl in this case. To execute the file give following command.

$./progl

SUMMARY

We're done for now, but
Todo's for you after this
lecture...

* 6o through the slides and Book Sectio;s; : 2.3, 2.8
* 6o through Unix The Text Book Chapters: 3,4,5, 7

* Make your hands dirty by writing some basic C programs
in UNIX using gcc compiler.

* A program that receives two command line arguments, a text file name and
a string via command line parameters, opens that file, search the string and
display the line(s) containing that string only. (See grep command)

« A program that is passed a file name as command line parameter, it opens
the file, encrypts its contents and saves the encrypted file in the same
directory with another name. (cipher).

* Make a decipher program also which do vice versa of above.

If you have problems (in finding drawbacks) visit me in counseling hours. . . .
42

