
1

CMP325
Operating Systems

Lecture 03

Program vs Process

• Muhammad Arif Butt, PhD
Note:
Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice following video lectures:
OS with Linux:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
System Programming:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

Today’s Agenda
• Review of previous lecture

• Users, programs and processes

• Program on disk and its components

• Viewing contents of program file

• Process in memory and its components

• Stack, Heap and PCB

• Command line arguments and environment var

• Viewing contents of a running process
2

3

Users, Programs and Processes
• Users have accounts on the system

• Users write programs, then execute programs
• Different users may execute same program

• One user may execute many instances of the same program

• A program by itself is not a Process:
• Program is a passive entity like the contents of a file stored on a

disk

• Process is an active entity, in which the Program Counter specifies
the next instruction to be executed

• A process is
• A program in execution

• An instance of a program running on a computer

• An entity that can be assigned to and executed on a processor

• The UNIX system creates a process every time you run an external
command, and the process is removed from the system when the
command finishes its execution

4

5

Instructor:Arif Butt

Source code files (main.c, swap.c)

Preprocessed code files (main.i, swap.i)

Assembly code files (main.s, swap.s)

Object code files (main.o, swap.o)

Executable file (myexe)

Stored in secondary storage as an
executable image

Process Address
Space in main

memory

Preprocessing (cpp)

gcc main.o swap.o -o myexe

Compiling (cc)

Assembling (as)

Linking (ld)

Loader

Static
Library (.a)

Dynamic
Library (.so)

Load Time

Dynamic
Library (.so) Run Time

Fetch
Exec

R0
…

R31
F0
…

F30
PC

…
Data1
Data0

Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

Addr 232-1

What happens during Program execution?

• Execution sequence:
– Fetch Instruction at PC
– Decode
– Execute (possibly using

registers)
– Write results to registers/mem
– PC = Next Instruction(PC)
– Repeat

PC
PC
PC
PC

5

6

Mapping of a C Program into Process
Address Space

7

A Program on Disk
• A program is a file containing a range of information that

describes how to construct a process, when a program file
is loaded into memory

• Object file formats vary from system to system, like a.out,
COFF, ELF and PE. Today almost all of the UNICES use
Executable and Linking Format

• ELF not only simplifies the task of making shared libraries,
but also enhances dynamic loading of modules at run time.
An executable file using the ELF format consist of ELF
Header, Program Header Table and Section Header Table

• The files that are represented in this format are:

• Relocatable file objects (.o)

• Normal executable files (a.out)

• Shared object files (.so)

• Core files

8

Program File vs Process

February 25, 2018 11Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

 Loading Executable File in Memory

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

0xbfffffff

0xc0000000

etext

edata

end

0x00000000

0xffffffff
Memory
invisible
to user code

Process Address Space

0x40000000

Program Loading is a process of copying a program from disk to main memory in order to make it a process

One program may be used to construct many processes or many processes may be running the same program

9

Components of a Program
1. .init section: contains different start up routines, which are

executed before calling the main() function

2. .text section: contains machine code and is read-only

3. .rodata section: contains read only data like strinng literals and
constants

4. .data section: contains initialized global and static variables

5. .bss section: contains uninitialized global variables. Named
after IBM704 assembly instruction Block Storage Start. Since
this section occupies no actual space in the object file, so some
people call it Better Save Space

6. .symtab section: contains the symbol table which contains

• Name, type and relative address of global variables

• Name and relative address of functions defined

• Name of external functions like printf()

7. .debug section: contains debugging information if compiled with
–g option

10

View Contents of Program File
You can use the size command to view the size of various
sections of a program file

$ size /bin/sh

The most common command that is used to view and
understand the contents of a program file on disk is readelf

$ readelf –a prog1.o (display all info)

$ readelf –h prog1.o (display ELF header)

$ readelf –a prog1.o (display names of diff sections)

We can also use objdump command to display information
from object files

$ objdump –h prog1.o (display section headers from obj file)

$ objdump –d prog1.o (show disassembly of .text section)

$ objdump –D prog1.o (show disassembly of all sections)

$ objdump –d –M intel prog1.o

11

Components of a Process
From the program file on disk, only the .init, .text, .rodata, .data, and .bss

sections are copied to the process address space. The rest of the process

address space is created at run time

1. Heap: Used to allow a process to request for allocation/ de-allocation

of memory at run time, grows towards higher addresses

2. Stack: Used to store the function stack frames or activation records,

which are pushed on the stack when a function is called and popped

from the stack when a function returns. A FSF on x86 contains

function arguments, function return address, base pointer and local

variables. So the top of the stack contains command line arguments

and environment variables passed to the main() function. Then the

stack grows down, towards lower addresses (on x86)

3. Process Control Block At the top, almost 1/4th of the process address

space is reserved for code of the kernel and data structures related

to itself and also for every process. One important data structure

that kernel maintains for every process is called PCB

12

Process Control Block
PCB is the most important and central data structure in an

Operating System maintained by kernel. It contains

information associated with a specific process that is used by

OS to control that process. It contains information as shown:

13

Command Line Arguments

14

Use of Command Line Arguments

15

Environment Variables

16

Requesting Memory on Process Heap
• In a process address space the heap starts just above the

data segment. Unlike stack, heap grows up towards the higher
addresses

• A programmer normally use heap when he/she does not know
how much memory (variables, arrays) will be required at run
time

• Some of you might have used the function alloca() to
allocate a specific amount of memory in the caller’s stack, but
the limitation of this method is that it do not survive the
return statement of the function in which it is created, i.e., it
is freed automatically when a function returns. So its scope is
limited to the FSF of the function in which it is created

• Every programming language provide functions for allocation
and deallocation memory on heap. In case of C, we can use the
malloc() family of functions to allocate and free memory

17

CLA & EV

Top of stack

rbp

rsp

Hi address

Low address

char* str

.text

.data

.bss
brk

char*str=(char*)malloc(sizeof(char)*10);

…

…

…

brk

free(str);

&end

&edata

&etext

Illustration: 1D Array on Heap

18

names

0

1

2

3

int i, rows = 4, cols = 12;

char ** names = (char**)malloc(sizeof(char*) * rows);

for(i = 0; i < rows; i++)

names[i] = (char*)malloc(sizeof(char) * cols);

…

…

…

for(i = 0; i < rows; i++)

free(names[i]);

free(names);

A r i f B u t t \0 \0 \0

H a d e e d \0 \0 \0 \0 \0 \0

M u j a h i d \0 \0 \0 \0 \0

Y a s h a l \0 \0 \0 \0 \0 \0

Illustration: 2D Array on Heap

19

View Contents of Running Processes
In order to provide easier access to information related to
the OS kernel and running processes, many modern UNIX
implementation provides /proc/ virtual file system. The /proc
file system is called virtual because the files and sub-
directories it contains does not reside on disk. Instead the
kernel creates them on the fly as processes are created and
terminated. It answers the questions like:
• How many processes are running on the system and who owns them?

• Which program file the process is executing?

• Which is the present working directory of a process?

• What command line arguments are passed to a process?

• What environment variables are passed to a process?

• What all files the process has open?

• What is the status of a running process?

For further information students must visit the man page of /proc
directory

20

Linux Commands to View Processes
• Process Status (ps) command is the most commonly used

command to display the information about running
processes

$ ps [-axul]

• Top is another very famous command that is used to
monitor the CPU usage in real time. By default it refreshes
its o/p every three seconds. Displays a summary area having
about six lines of info and a per process information area
having about 12 columns. It is an interactive command, and
some of the important command keys are:
• n: Prompts for number of processes to display

• u: Prompts user name, whose processes to be displayed

• s: Prompts number of seconds to refresh the display

• r: Prompts PID and nice value to be changed

• k: Prompts PID and signal to be sent to a process

For further information students must visit the man page of ps and top

SUMMARY

21

We’re done for now, but
Todo’s for you after this
lecture…

22

If you have problems visit me in counseling hours. . . .

• Go through the slides and Book Sections: 3.1 to 3.3

• Go through Unix The Text Book Chapter 13

• Type, compile, execute, and understand the programs on
the slides and also the programs discussed in class

• Start making your hands dirty before you get your First
Programming Assignment

